已知點F1、F2分別是橢圓
x2
a2
+
y2
b2
=1
的左、右焦點,過F1且垂直于x軸的直線與橢圓交于A、B兩點,若△ABF2為正三角形,則該橢圓的離心率e是(  )
A、
1
2
B、
2
2
C、
1
3
D、
3
3
分析:先求出 AF1 的長,直角三角形AF1F2 中,由邊角關系得 tan30°=
AF1
F1F2
=
b2
a
2c
,建立關于離心率的方程,
解方程求出離心率的值.
解答:解:把x=-c代入橢圓的方程可得y=
b2
a

∴AF1 =
b2
a
,
由tan30°=
3
3
=
AF1
F1F2
=
b2
a
2c
=
a2-c2
2ac
=
1-e2
2e
,
求得 3e2+2
3
e-3=0,
解得 e=-
3
(舍去),或e=
3
3
,
故選D.
點評:本題考查橢圓的簡單性質,直角三角形中的邊角關系,解方程求離心率的大小,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•聊城一模)已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點,P是橢圓C上的一點,且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面積為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)點M的坐標為(
5
4
,0)
,過點F2且斜率為k的直線l與橢圓C相交于A,B兩點,對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青州市模擬)已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為
2
+1
,且△PF1F2的最大面積為1.
( I)求橢圓C的方程.
( II)點M的坐標為(
5
4
,0)
,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點.對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,點P為橢圓上任意一點,P到焦點F2(1,0)的距離的最大值為
2
+1.
(1)求橢圓C的方程.
(2)點M的坐標為(
5
4
,0),過點F2且斜率為k的直線l與橢圓C相交于A,B兩點.對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省期中題 題型:解答題

已知點F1,F(xiàn)2分別為橢圓C:(a>b>0)的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為+1,且△PF1F2的最大面積為1。
(1)求橢圓C的方程。
(2)點M的坐標為,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點。對于任意的k∈R,是否為定值?若是求出這個定值;若不是說明理由。 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省青島十九中高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知點F1,F(xiàn)2分別為橢圓C:的左右焦點,P是橢圓C上的一點,且的面積為
(Ⅰ)求橢圓C的方程;
(Ⅱ)點M的坐標為,過點F2且斜率為k的直線l與橢圓C相交于A,B兩點,對于任意的是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

同步練習冊答案