已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿(mǎn)足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2012)=a,則f(-2012)=( )
A.2
B.2-2012-22012
C.22012-2-2012
D.a(chǎn)2
【答案】分析:由f(x)+g(x)=ax-a-x+2可得f(-x)+g(-x)=a-x-ax+2,結(jié)合f(-x)=-f(x),g(-x)=g(x)可求a,及f(x),代入可求
解答:解:∵f(x)+g(x)=ax-a-x+2①
∴f(-x)+g(-x)=a-x-ax+2
∵f(-x)=-f(x),g(-x)=g(x)
∴-f(x)+g(x)=a-x-ax+2②
聯(lián)立①②可得,f(x)=ax-a-x,g(x)=2
∵g(2012)=a,
∴a=2
則f(-2012)=2-2012-22012
故選B
點(diǎn)評(píng):本題主要考查了奇偶函數(shù)的定義在函數(shù)解析式的求解中的應(yīng)用,解題的關(guān)鍵是由g(x)確定a的值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問(wèn):是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:大連二十三中學(xué)2011學(xué)年度高二年級(jí)期末測(cè)試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個(gè)不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤數(shù)學(xué)公式時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案