已知橢圓=1(a>b>0)的離心率e=,連結橢圓的四個頂點得到的菱形的面積為4.
(1) 求橢圓的方程;
(2) 設直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(-a,0).若|AB|=,求直線l的傾斜角.
科目:高中數(shù)學 來源: 題型:
設A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.
(1) 求證:+=1;
(2) P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3) 直線l與橢圓E交于M、N兩點,且=0,試判斷直線l與圓C的位置關系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設A、B分別為橢圓=1(a>b>0)的左、右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.
(1) 求橢圓的方程;
(2) 設P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP與橢圓相交于兩點B、N,求證:∠NAP為銳角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且=0.
(1) 求橢圓E的離心率;
(2) 已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結MF1并延長交橢圓E于點N,連結MD、ND并分別延長交橢圓E于點P、Q,連結PQ,設直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知數(shù)列{an}滿足a1=2,an+1= (n∈N*),則a3=________,a1·a2·a3·…·a2007=________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com