精英家教網 > 高中數學 > 題目詳情
9.給出下列命題:①存在實數x,使$sinx+cosx=\frac{3}{2}$;②若α,β是第一象限角,且α>β,則cosα>cosβ;③函數$y=sin(\frac{2}{3}x+\frac{π}{2})$是偶函數;④函數y=sin2x的圖象向左平移$\frac{π}{4}$個單位,得到函數$y=sin(2x+\frac{π}{4})$的圖象.
其中正確命題的個數是( 。
A.1個B.2個C.3個D.4個

分析 ①,由 sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})≤\sqrt{2}$判定;
②,取α=3900,β=200都是第一象限角,且α>β,則cosα<cosβ;
對于③,函數$y=sin(\frac{2}{3}x+\frac{π}{2})$=cos$\frac{2}{3}x$是偶函數;  
對于④,函數y=sin2x的圖象向左平移$\frac{π}{4}$個單位,得到函數y=sin(2(x+$\frac{π}{4}$)的圖象.

解答 解:對于①,sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})≤\sqrt{2}$,$sinx+cosx=\frac{3}{2}$不可能,故錯;
對于②,取α=3900,β=200都是第一象限角,且α>β,則cosα<cosβ,故錯;
對于③,函數$y=sin(\frac{2}{3}x+\frac{π}{2})$=cos$\frac{2}{3}x$是偶函數,故正確;  
對于④,函數y=sin2x的圖象向左平移$\frac{π}{4}$個單位,得到函數y=sin(2(x+$\frac{π}{4}$)的圖象,故錯.
故選:A.

點評 本題考查了三角函數的基礎知識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

19.如圖,已知正方形的面積為100,向正方形內隨機地撒200顆黃豆,數得落在陰影外的黃豆數為114顆,以此實驗數據為依據,可以估計出陰影部分的面積約為( 。
A.53B.43C.47D.57

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知圓C:(x-1)2+(y-1)2=9,直線l:y=kx+3與圓C相交于A、B兩點,M為弦AB上一動點,以M為圓心,1為半徑的圓與圓C總有公共點,則實數k的取值范圍( 。
A.(-∞,0]B.[$\frac{4}{3}$,+∞)C.[0,$\frac{4}{3}$]D.(0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知函數f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{lo{g}_{\frac{1}{2}}{x}^{2},x>1}\end{array}\right.$,則f(4)=( 。
A.5B.0C.-4D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.函數$y=\frac{sinx}{|sinx|}+\frac{|cosx|}{cosx}+\frac{tanx}{|tanx|}$的值是( 。
A.-1B.-1,3C.3D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.某外商到一開防區(qū)投資72萬美元建起一座蔬菜加工廠,第一年各種經費12萬美元,以后每年增加4萬美元,每年銷售蔬菜投入50萬美元.
(1)若扣除投資及各種經費,則從第幾年開始獲取純利潤?
(2)試計算第幾年平均獲取純利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.(文)某質點的位移函數是s(t)=2t3,則當t=2s時,它的瞬時速度是24m/s.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.判斷下列函數的奇偶性.
(1)f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$;
(2)f(x)=x($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.函數y=f(x)的圖象與直線x=a的交點個數為0或1.

查看答案和解析>>

同步練習冊答案