20.在一個幾何體的三視圖中,正視圖與俯視圖如右圖所示,則相應的側視圖可以為( 。
A.B.C.D.

分析 由俯視圖和正視圖可以得到幾何體是一個簡單的組合體,是由一個三棱錐和被軸截面截開的半個圓錐組成,根據(jù)組合體的結構特征,得到組合體的側視圖.

解答 解:由俯視圖和正視圖可以得到幾何體是一個簡單的組合體,
是由一個三棱錐和被軸截面截開的半個圓錐組成,
∴側視圖是一個中間有分界線的三角形,
故選:C.

點評 本題考查簡單空間圖形的三視圖,考查由三視圖看出原幾何圖形,再得到余下的三視圖,本題是一個基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(文)試卷(解析版) 題型:選擇題

若不等式表示的平面區(qū)域為、均為內(nèi)一點,為坐標原點,,則下列判斷正確的是( )

A.的最小值為 B.的最小值為

C.的最大值為 D.的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.對部分4G手機用戶每日使用流量(單位:M)進行統(tǒng)計,得到如下記錄:
流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
頻率0.050.250.300.250.150
將手機日使用的流量統(tǒng)計到各組的頻率視為概率,并假設每天手機的日流量相互獨立.
(Ⅰ)求某人在未來連續(xù)4天里,有連續(xù)3天的手機的日使用流量都不低于15M且另1天的手機日使用流量低于5M的概率;
(Ⅱ)用X表示某人在未來3天時間里手機日使用流量不低于15M的天數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知拋物線C:y2=4x,O是原點,A,B為拋物線上兩動點,且滿足OA⊥OB,若OM⊥AB于M點.
(Ⅰ)求M的軌跡方程.
(Ⅱ)過點F(1,0)作互相垂直的兩條直線l1,l2,分別交拋物線C于點P、Q和點K、L.設線段PQ,KL的中點分別為R、T,求證:直線RT恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知向量$\overrightarrow{OA}=(2,0),\overrightarrow{OC}=\overrightarrow{AB}=(0,1)$,其中O為坐標原點,動點M到定直線y=1的距離等于d,并且滿足$\overrightarrow{OM}•\overrightarrow{AM}=k(\overrightarrow{CM}•\overrightarrow{BM}-{d^2}),k$為非負實數(shù)
(1)求動點M的軌跡C1的方程
(2)若將曲線C1向左平移一個單位得到曲線C2,試指出C2為何種類型的曲線;
(3)若0<k<1,F(xiàn)1、F2是(2)中曲線C2的兩個焦點,當點P在C2上運動時,求∠F1PF2取得最大值時對應點P的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知平面ABC⊥平面ACDE,且△ABC為等腰直角三角形,AC=BC=4,等腰梯形ACDE中,AC∥DE且AE=DE=2.
(Ⅰ)求證:平面ABE⊥平面BCE;
(Ⅱ)求二面角C-BE-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若直角坐標平面內(nèi)兩相異點A、B兩點滿足:
①點A、B都在函數(shù) f (x) 的圖象上;②點A、B關于原點對稱,
則點對 (A,B) 是函數(shù) f (x) 的一個“姊妹點對”.點對 (A,B) 與 (B,A) 可看作是同一個“姊妹點對”.已知函數(shù) f (x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{x+1}{e},x≥0}\end{array}\right.$,則 f (x) 的“姊妹點對”有( 。
A.0 個B.1 個C.2 個D.3 個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.湛江成功申辦2014年廣東省第十四屆運動會.為做好承辦工作,決定選拔3名專業(yè)人士加入組委會.經(jīng)過初選確定4男2女為候選人,每位候選人當選的機會相等.記ξ為女專業(yè)人士當選人數(shù).
(1)求ξ=0的概率; 
(2)求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2$\sqrt{2}sin(θ+\frac{π}{4})$,則直線l與曲線C相交的弦長為$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

同步練習冊答案