已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,其前n項(xiàng)和為Sn,點(diǎn)(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn=,證明:c1+c2+c3+…+cn<3.
(1)an=2n-1.,見解析(2)見解析
【解析】(1)因?yàn)辄c(diǎn)(an+1,S2n-1)在函數(shù)f(x)的圖象上,所以=S2n-1.
令n=1,n=2,得即解得a1=1,d=2(d=-1舍去),則an=2n-1.
由(bn-bn+1)·g(bn)=f(bn),
得4(bn-bn+1)(bn-1)=(bn-1)2.
由題意bn≠1,所以4(bn-bn+1)=bn-1,
即3(bn-1)=4(bn+1-1),所以.
所以數(shù)列{bn-1}是以1為首項(xiàng),公比為的等比數(shù)列.
(2由(1),得bn-1=n-1.
cn===.
令Tn=c1+c2+c3+…+cn,
則Tn=,①
Tn=,②
①-②得,Tn=++++…+-=1+-=2--=2-.所以Tn=3-.
所以c1+c2+c3+…+cn=3-<3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用19練習(xí)卷(解析版) 題型:解答題
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓=1在M-1的作用下的新曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,以橢圓=1(a>b>0)上的一點(diǎn)A為圓心的圓與x軸相切于橢圓的一個(gè)焦點(diǎn),與y軸相交于B、C兩點(diǎn),若△ABC是銳角三角形,則該橢圓的離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用11練習(xí)卷(解析版) 題型:解答題
已知雙曲線x2-=1.
(1)若一橢圓與該雙曲線共焦點(diǎn),且有一交點(diǎn)P(2,3),求橢圓方程.
(2)設(shè)(1)中橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,直線l為橢圓的右準(zhǔn)線,N為l上的一動(dòng)點(diǎn),且在x軸上方,直線AN與橢圓交于點(diǎn)M.若AM=MN,求∠AMB的余弦值;
(3)設(shè)過A、F、N三點(diǎn)的圓與y軸交于P、Q兩點(diǎn),當(dāng)線段PQ的中點(diǎn)為(0,9)時(shí),求這個(gè)圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用11練習(xí)卷(解析版) 題型:填空題
已知圓的方程為x2+y2-6x-8y=0,設(shè)該圓中過點(diǎn)(3,5)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用10練習(xí)卷(解析版) 題型:填空題
已知首項(xiàng)為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1 006和a1 007是方程x2-2 012x-2 011=0的兩根,則使Sn>0成立的正整數(shù)n的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練4練習(xí)卷(解析版) 題型:填空題
已知一個(gè)正方體的所有頂點(diǎn)在一個(gè)球面上.若球的體積為π,則正方體的棱長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練3練習(xí)卷(解析版) 題型:填空題
已知正方形ABCD的邊長為2, E為CD的中點(diǎn),則·=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
已知四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積為( )
A. B. C. D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com