已知x>0,y>0,
1
x
+
1
y
=1,則2x+y最小值為
 
考點:基本不等式
專題:計算題,不等式的解法及應(yīng)用
分析:2x+y=(2x+y)(
1
x
+
1
y
),化簡后利用基本不等式可求.
解答: 解:∵x>0,y>0,
1
x
+
1
y
=1,
∴2x+y=(2x+y)(
1
x
+
1
y
)=3+
y
x
+
2x
y
≥3+2
y
x
2x
y
=3+2
2
,
當(dāng)且僅當(dāng)
y
x
=
2x
y
時取等號,
y
x
=
2x
y
1
x
+
1
y
=1
解得x=1+
2
2
,y=
2
+
1,
∴2x+y最小值為3+2
2
,
故答案為:3+2
2
點評:該題考查利用基本不等式求函數(shù)的最值,屬基礎(chǔ)題.變形:2x+y=(2x+y)(
1
x
+
1
y
)是解決本題的關(guān)鍵所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
cos2x+
3
2
sin2x+
3
2
,x∈R.
(1)求f(x)的最小正周期和最值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k≤1時,求證:f(x)≥kx-1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,首項a1=1,公比q=2,則{an}的前8項和S8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
16
+
y2
9
=1,F(xiàn)1、F2是其兩個焦點,CD為過F1的弦,則△F2CD的周長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

世衛(wèi)組織規(guī)定,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).清遠(yuǎn)市環(huán)保局從市區(qū)2013年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉),從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),則恰有一天空氣質(zhì)量達(dá)到一級的概率為
 
(用分?jǐn)?shù)作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+4(0≤x≤2)的圖象與坐標(biāo)軸圍成的平面區(qū)域記為M,滿足不等式組
2x-y≥0
2x+ay-2≤0
y≥0
的平面區(qū)域記為N,已知向區(qū)域M內(nèi)任意地投擲一個點,落入?yún)^(qū)域N的概率為
3
32
,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若對任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,t稱為比公差.現(xiàn)給出以下命題:
①若{an}是等差數(shù)列,{bn}是等比數(shù)列,則數(shù)列{anbn}是比等差數(shù)列.
②若數(shù)列{an}滿足an=
2n-1
n2
,則數(shù)列{an}是比等差數(shù)列,且比公差t=
1
2

③等比數(shù)列一定是比等差數(shù)列,等差數(shù)列不一定是比等差數(shù)列;
④若數(shù)列{cn}滿足c1=1,c2=1,cn=cn-1+cn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|2x-1|>3的解集是( 。
A、{x|-1<x<2}
B、{x|-2<x<1}
C、{x|x>2或x<-1}
D、{x|x>-1或x<2}

查看答案和解析>>

同步練習(xí)冊答案