如圖,在邊長為4的正方形ABCD的邊上有一點(diǎn)P,沿著折線BCDA由點(diǎn)B(起點(diǎn))向點(diǎn)A(終點(diǎn))運(yùn)動.設(shè)點(diǎn)P運(yùn)動的路程為x,△APB的面積為y,

求(1)y與x之間的關(guān)系;(2)畫出y=f(x)的圖象.

答案:略
解析:

按照題意,根據(jù)x的變化,寫出分段函數(shù)的解析式.

(1)

(2)畫出y=f(x)的圖象,如圖所示.

分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是“幾個(gè)函數(shù)”.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖邊長為4的正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求點(diǎn)P到平面ABCD的距離;
(2)求證:PA∥平面MBD;
(3)試問:在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖邊長為4的正方形ABCD所在平面與正△PAD所在平面互相垂直,M、Q分別為PC,AD的中點(diǎn).
(1)求證:PA∥平面MBD;
(2)求:二面角P-BD-A的余弦值;
(3)試問:在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•資陽模擬)如圖,在邊長為2的正六邊形ABCDEF中,P是△CDE內(nèi)(含邊界)的動點(diǎn),設(shè)向量
AP
=m
AB
+n
AF
(m,n為實(shí)數(shù)),則m+n的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武清區(qū)一模)如圖,六棱錐P-ABCDEF的底面ABCDEF是邊長為l的正六邊形,頂點(diǎn)P在底面上的射影是BF的中點(diǎn)O.
(1)求證:PA⊥BF;
(2)若直線PB與平面ABCDEF所成的角為
π4
,求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)M,N是邊長為4的正△ABC的邊AB,AC的中點(diǎn),現(xiàn)將△AMN沿MN折起,使平面AMN⊥平面BCNM.在四棱錐A—BCNM中,

(1)求異面直線AM與BC所成的角;

(2)求直線BA與平面ANC所成角的正弦值;

(3)在線段AB上,是否存在一個(gè)點(diǎn)Q,使MQ⊥平面ABC?若存在,試確定點(diǎn)Q的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案