函數(shù)f(x)=
b
|x|-a
(a>0,b>0)
的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.給出下列五個(gè)命題:
①“囧函數(shù)”在在(0,+∞)上單調(diào)遞增;      
②“囧函數(shù)”的值域?yàn)镽;
③“囧函數(shù)”有兩個(gè)零點(diǎn);                 
④“囧函數(shù)”的圖象關(guān)于y軸對(duì)稱;
⑤“囧函數(shù)”的圖象與直線y=kx+m(k≠0)至少有一個(gè)交點(diǎn).
其中正確的結(jié)論是:
 
.(寫出所有正確結(jié)論的序號(hào))
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先判斷函數(shù)為偶函數(shù),再令a=b=1,得到特殊的函數(shù),利用特殊值法,研究函數(shù)的值域,單調(diào)性,和零點(diǎn)問題,利用數(shù)形結(jié)合的方法進(jìn)行判斷;
解答: 解:(1)由題意,f(x)=
b
|x|-a
(a>0,b>0)
,f(-x)=f(x),是偶函數(shù);
當(dāng)a=b=1時(shí),
則f(x)=
1
|x|-1
,其函數(shù)的圖象如圖:如圖顯然f(x)在(0,+∞)上不是單調(diào)函數(shù),故①錯(cuò)誤;
如圖y≠0,值域肯定不為R,故②錯(cuò)誤;
如圖f(x)≠0,沒有零點(diǎn),故③錯(cuò)誤;
f(x)是偶函數(shù),關(guān)于y軸對(duì)稱,故④正確;
如圖可知函數(shù)f(x)的圖象,x=1換為x=a,在四個(gè)象限都有圖象,
此時(shí)與直線y=kx+b(k≠0)的圖象至少有一個(gè)交點(diǎn).故⑤正確;
故答案為:④⑤;
點(diǎn)評(píng):本題考查“囧函數(shù)”的新定義,關(guān)鍵要讀懂題意,只要畫出其圖象就很容易求解了,解題過程中用到了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+a
bx-c
(b,c∈N+).若方程f(x)=x的根為0和2,且f(-2)<-
1
2

(1)求函數(shù)f(x)的解析式;
(2)已知各項(xiàng)均不為零的數(shù)列{an}滿足:4Snf(
1
an
)=1(Sn為該數(shù)列前n項(xiàng)和),求該數(shù)列的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2+4x+5
+
x2-4x+8
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條長為2的線段,它的三個(gè)視圖分別是長為
3
,a,b的三條線段,則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于數(shù)列有下列命題:
(1)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=an-1(a∈R),則{an}為等差或等比數(shù)列;
(2)數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會(huì)有am=an(m≠n),
(3)一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>0(k∈N*),則對(duì)于任意自然數(shù)n>k,都有an>0;
(4)一個(gè)等比數(shù)列{an}中,若存在自然數(shù)k,使ak•ak+1<0,則對(duì)于任意n∈N*,都有an•an+1<0,
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓mx2+ny2=1與直線x+y=1相交于A、B兩點(diǎn),C為AB中點(diǎn),若|AB|=2
2
,O為坐標(biāo)原點(diǎn),OC的斜率為
2
2
,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐A-BCD的所有頂點(diǎn)都在球O的球面上,AB為球O的直徑,若該三棱錐的體積為
2
3
3
,BC=2,BD=
3
,∠CBD=90°,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=-x2+6x-7的對(duì)稱軸方程是直線(  )
A、x=6B、x=3
C、x=-3D、x=-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且x>0時(shí),f(x)=-x2+1,則x<0時(shí),f(x)=(  )
A、-x2+1
B、-x2-1
C、x2+1
D、x2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案