分析 (1)由遞推式可得數(shù)列{an}是以3為首項(xiàng),以2為公比的等比數(shù)列,則答案可求;
(2)由遞推式可得數(shù)列{$\frac{{a}_{n}}{n+1}$}為常數(shù)列,結(jié)合已知求得數(shù)列{an}的通項(xiàng)公式;
(3)由遞推式構(gòu)造等比數(shù)列{an+1},再由等比數(shù)列的通項(xiàng)公式得答案.
解答 解:(1)由a2=6,an+1-2an=0,可得:a1=3,$\frac{{a}_{n+1}}{{a}_{n}}=2$.
∴數(shù)列{an}是以3為首項(xiàng),以2為公比的等比數(shù)列,
∴${a}_{n}=3•{2}^{n-1}$;
(2)由an+1=an+$\frac{{a}_{n}}{n+1}$,得$\frac{{a}_{n+1}}{(n+1)+1}=\frac{{a}_{n}}{n+1}$,
∴數(shù)列{$\frac{{a}_{n}}{n+1}$}為常數(shù)列.
由a1=1,得$\frac{{a}_{1}}{2}=\frac{1}{2}$,
∴$\frac{{a}_{n}}{n+1}=\frac{1}{2}$,則${a}_{n}=\frac{n+1}{2}$;
(3)由an+1=2an+3,得an+1+1=2(an+1),
又a1=2,∴a1+1=3≠0,
∴數(shù)列{an+1}是以3為首項(xiàng),以2為公比的等比數(shù)列,
則${a}_{n}+1=3•{2}^{n-1}$,
∴${a}_{n}=3•{2}^{n-1}-1$.
故答案為:3•2n-1-1.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了等比數(shù)列通項(xiàng)公式的求法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,2] | B. | [$-\frac{1}{2}$,$\frac{3}{2}$] | C. | [$\frac{1}{2}$,$\frac{5}{2}$] | D. | [$\frac{1}{2}$,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10n | B. | n10 | C. | 100n | D. | n100 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com