過點(diǎn)P(-
3
,0),作直線l交橢圓11x2+y2=9于M、N兩點(diǎn),若以M、N為直徑的圓恰好通過橢圓的中心,求直線l的傾斜角.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:當(dāng)l⊥x軸時(shí),把P(-
3
,0)代入橢圓方程:11×3+y2=9,無解,舍去.當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=k(x+
3
)
,M(x1,y1),N(x2,y2).
與橢圓的方程聯(lián)立,化為(11+k2)x2+2
3
k2x
+3k2-9=0,要求△>0.以M、N為直徑的圓恰好通過橢圓的中心,可得
OM
ON
=0,把根與系數(shù)的關(guān)系代入即可得出.
解答: 解:當(dāng)l⊥x軸時(shí),把P(-
3
,0)代入橢圓方程:11×3+y2=9,無解,舍去.
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=k(x+
3
)
,M(x1,y1),N(x2,y2).
聯(lián)立
y=k(x+
3
)
11x2+y2=9
,化為(11+k2)x2+2
3
k2x
+3k2-9=0,
∵△=12k4-4(11+k2)(3k2-9)>0,解得k2
33
8

∴x1+x2=-
2
3
k2
11+k2
,x1x2=
3k2-9
11+k2

∵以M、N為直徑的圓恰好通過橢圓的中心,
OM
ON
=x1x2+y1y2=x1x2+k2(x1+
3
)(x2+
3
)
=0,
化為(1+k2)x1x2+
3
k2(x1+x2)+3k2
=0,
(1+k2)(3k2-9)
11+k2
-
2
3
k2×
3
k2
11+k2
+3k2=0,
化為k2=
1
3
,滿足△>0.
解得k=±
3
3

設(shè)直線l的傾斜角為θ,θ∈[0,π),
∴tanθ=±
3
3

∴θ=
π
6
6
點(diǎn)評(píng):本題考查了直線與橢圓相交問題轉(zhuǎn)化為橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系、向量垂直與數(shù)量積的關(guān)系、圓的性質(zhì),考查了分類討論思想方法,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,b>0,a+b=1,則y=
1
a
+
1
b
的最小值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+2),a,b,c是兩兩不相等的正數(shù),且a,b,c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
2
x+1 在x∈[
1
4
,8)上的值域?yàn)?div id="qtwz4rd" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有標(biāo)號(hào)為1、2、3、4、5、的五個(gè)紅球和標(biāo)號(hào)為1、2的兩個(gè)白球,將這七個(gè)球排出一排,使兩端都是紅球.
(1)如果每個(gè)白球的兩邊都是紅球,有多少種排法?
(2)如果1號(hào)紅球和1號(hào)白球相鄰排在一起,有多少種排法?
(3)同時(shí)滿足上述兩個(gè)條件的排法是多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐P-ABC中,PA⊥平面 ABC,△ABC是正三角形,AC=2 PA=2,D、E分別為棱 AC和 BC的中點(diǎn).
(1)證明:DE∥平面PAB;
(2)證明:平面 PBD⊥平面PAC;
(3)求三棱錐P-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某幾何體的三視圖,則該幾何體的體積等于( 。
A、
2
3
B、
4
3
C、1
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司招聘職員,對(duì)甲、乙兩位候選人進(jìn)行了面試和筆試,成績(jī)(百分制)如表:
候選人面試筆試
形體口才專業(yè)水平創(chuàng)新能力
86909692
92889593
如果公司要求形體、口才、專業(yè)水平、創(chuàng)新能力按照5%、30%、35%、30%計(jì)算總分,那么將錄取
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}中,公比q>1,2a3
3
2
a5的等差中項(xiàng)為2a4,a2與a6的等比中項(xiàng)為8.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=log2an,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案