【題目】已知函數(shù)fx|2x3|,gx|2x+a+b|.

1)解不等式fxx2

2)當(dāng)a0,b0時(shí),若Fxfx+gx)的值域?yàn)?/span>[5+∞),求證:.

【答案】1;(2)見(jiàn)解析

【解析】

1)由題意可得|2x3|x2,由絕對(duì)值的意義,去絕對(duì)值,解不等式,求并集,可得所求解集;

2)由a0b0,根據(jù)絕對(duì)值三角不等式,化簡(jiǎn)可得Fx)的最小值,可得a+b的值,再由乘1法和基本不等式,即可得證.

1)解:不等式fxx2化為|2x3|x2,等價(jià)于,

即為

解得xx31x

所以不等式fxx2的解集為{x|x1x3}

2)證明:由a0,b0,

根據(jù)絕對(duì)值三角不等式可知Fxfx+gx|2x3|+|2x+a+b||32x|+|2x+a+b|

≥|32x+2x+a+b||a+b+3|a+b+3

Fxfx+gx)的值域?yàn)?/span>[5,+∞),

可得a+b+35,

a+b2,

即(a+2+b+26,

[a+2+b+2]

22+2

當(dāng)且僅當(dāng),即ab1時(shí)取等號(hào)時(shí),

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過(guò)全國(guó)人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的共同努力,新冠肺炎疫情得到了有效控制.作為集中醫(yī)學(xué)觀察隔離點(diǎn)的某酒店在疫情期間,為客人提供兩種速食品—“方便面和“自熱米飯”.為調(diào)查這兩種速食品的受歡迎程度,酒店部門經(jīng)理記錄了連續(xù)10天這兩種速食品的銷售量,得到如下頻數(shù)分布表(其中銷售量單位:盒):

1

2

3

4

5

6

7

8

9

10

方便面

103

93

98

93

106

86

87

94

91

99

自熱米飯

88

96

98

97

101

99

102

107

104

112

1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖(填到答題卡上);

2)根據(jù)統(tǒng)計(jì)學(xué)知識(shí),你認(rèn)為哪種速食品更受歡迎,并簡(jiǎn)要說(shuō)明理由;

3)求自熱米飯銷售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第12天自熱米飯的銷售量(結(jié)果精確到整數(shù)).

參考數(shù)據(jù):,.

附:回歸直線方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓的離心率為,為橢圓上位于第一象限上的點(diǎn),為橢圓的上頂點(diǎn),直線軸相交于點(diǎn)的面積為

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)直線過(guò)橢圓的右焦點(diǎn),且與橢圓相交于、兩點(diǎn)(、在直線的同側(cè)),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)將的單調(diào)區(qū)間和極值;

2)若有兩個(gè)零點(diǎn),求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCDHKLE中,底面ABCD是邊長(zhǎng)為3的正方形,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)F在線段AH上,且,BE與底面ABCD所成角為

1)求證:ACBE;

2)求二面角FBED的余弦值;

3)設(shè)點(diǎn)M在線段BD上,且AM//平面BEF,求DM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)ae2x+(a﹣2) exx.

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過(guò)原點(diǎn)且與軸不重合的直線交橢圓,兩點(diǎn),直線分別與軸交于點(diǎn),,.求證:以為直徑的圓恒過(guò)交點(diǎn),,并求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為邊長(zhǎng)為2的菱形,,的中點(diǎn),,

(Ⅰ)求證:平面

(Ⅱ)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABBC,∠ACB60°,DAC中點(diǎn),ABD沿BD翻折過(guò)程中,直線AB與直線BC所成的最大角、最小角分別記為α1,β1,直線AD與直線BC所成最大角、最小角分別記為α2β2,則有(

A.α1α2,β1β2B.α1α2β1β2

C.α1α2,β1β2D.α1α2β1β2

查看答案和解析>>

同步練習(xí)冊(cè)答案