如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分別是CC1,BC的中點(diǎn),點(diǎn)P在直線A1B1上,且

(1)證明:無論入取何值,總有AM⊥PN;

(2)當(dāng)入取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角取最大值時(shí)的正切值。

(3)是否存在點(diǎn)P,使得平面PMN與平面ABC所成的二面角為30º,若存在,試確定點(diǎn)P的位置,若不存在,說明理由。

解:如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,

則A1(0,0,1),B1(1,0,1), M(0,1,),

N(,0),

,

(1)∵,∴

∴無論取何值,AM⊥PN.........4分

(2)∵(0,0,1)是平面ABC的一個(gè)法向量。

∴sinθ=|cos<|=

∴當(dāng)時(shí),θ取得最大值,此時(shí)sinθ=,cosθ=,tanθ=2

當(dāng)時(shí),θ取得最大值,此時(shí)tanθ=2..........8分

(3)設(shè)存在,,設(shè)是平面PMN的一個(gè)法向量。

令x=3,得y=1+2,z=2-2

..........10分

∴|cos<>|=化簡得4

∵△=100-4413=-108<0∴方程(*)無解

∴不存在點(diǎn)P使得平面PMN與平面ABC所成的二面角為30º.........12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分別是棱CC1,AB中點(diǎn).
(Ⅰ)求證:CN⊥平面ABB1A1;
(Ⅱ)求證:CN∥平面AMB1;
(Ⅲ)求三棱錐B1-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿足
A1P
A1B1

(1)證明:PN⊥AM;
(2)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點(diǎn),點(diǎn)P在直線A1B1上,且
A1P
A1B1

(Ⅰ)證明:無論λ取何值,總有AM⊥PN;
(Ⅱ)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角取最大值時(shí)的正切值;
(Ⅲ)是否存在點(diǎn)P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點(diǎn)P的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點(diǎn),G為△ABC1的重心,則|
CG
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點(diǎn).
(1)求證:BD⊥AC1
(2)若AB=
2
,AA1=2
3
,求AC1與平面ABC所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案