如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
CG
|的值為( 。
分析:根據(jù)向量的加法、減法法則,用向量
C1A1
,
C1B1
,
C1C
來表示向量
CG
,再求|
CG
|
2
的值即可解.
解答:解:∵
CG
=
2
3
C1D
-
C1C
=
2
3
×
1
2
×(
C1A
-
C1B
)
-
C1C
1
3
×(
C1A1
+
A1A
+
C1B1
+
B1B
)
-
C1C

=
1
3
C1A1
+
C1B1
-
C1C

CG
2
=|
CG
|
2
=
1
9
×
|
C1A1
|
2
+|
C1B1
|
2
+|
C1C
|
2
+2×|
C1A1
|
C1B1
|
×COS
π
3
)=
1
9
×(4+4+4+2×2×2×
1
2
)

=
16
9

∴|
CG
|=
4
3

故選A.
點評:本題借助考查直線與平面的垂直,考查向量加、減混合運算及其幾何意義.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分別是棱CC1,AB中點.
(Ⅰ)求證:CN⊥平面ABB1A1;
(Ⅱ)求證:CN∥平面AMB1
(Ⅲ)求三棱錐B1-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知三棱柱ABC-A1B1C1的側棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足
A1P
A1B1

(1)證明:PN⊥AM;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點,點P在直線A1B1上,且
A1P
A1B1
;
(Ⅰ)證明:無論λ取何值,總有AM⊥PN;
(Ⅱ)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
(1)求證:BD⊥AC1;
(2)若AB=
2
,AA1=2
3
,求AC1與平面ABC所成的角.

查看答案和解析>>

同步練習冊答案