(本小題滿分13分)已知兩點,,曲線上的動點滿足,直線與曲線交于另一點.
(Ⅰ)求曲線的方程;
(Ⅱ)設,若,求直線的方程.
(Ⅰ)
(Ⅱ)
【解析】本試題主要是考查了曲線方程的求解,以及直線與橢圓的位置關系的綜合御用。
(1)因為,,
所以曲線是以,為焦點,長軸長為的橢圓.進而得到方程。
(2)設出直線方程與橢圓方程聯(lián)立方程組,然后結合韋達定理可知根與系數(shù)的關系,同時
因為,所以,則.
得到坐標的關系,得到結論。
解:(Ⅰ)因為,,
所以曲線是以,為焦點,長軸長為的橢圓.
曲線的方程為. ……5分
(Ⅱ)顯然直線不垂直于軸,也不與軸重合或平行. ……6分
設,直線方程為,其中.
由 得. 解得或.
依題意,. ……8分
因為,所以,則.
于是
所以 ……10分
因為點在橢圓上,所以 .
整理得 ,
解得或(舍去),從而 . ……12分
所以直線的方程為. ……13分
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com