設(shè)橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,離心率為,在x軸負(fù)半軸上有一點(diǎn)B,且=2

(1)若過A、B、F2三點(diǎn)的圓恰好與直線x-y-3=0相切,求橢圓C的方程;

(2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

答案:
解析:

  解:(1)由題意,得,所以

  又由于,所以的中點(diǎn),

  所以

  所以的外接圓圓心為,半徑;3分

  又過三點(diǎn)的圓與直線相切,

  所以解得,

  所求橢圓方程為;6分

  (2)有(1)知,設(shè)的方程為:

  將直線方程與橢圓方程聯(lián)立

  ,整理得

  設(shè)交點(diǎn)為,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0152/0020/0f2d578a6915dedde6d25e0c9d8e0eef/C/Image185.gif" width=73 height=21>

  則;8分

  若存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,

  由于菱形對(duì)角線垂直,所以

  又

  又的方向向量是,故,則

  ,即

  由已知條件知;11分

  ,故存在滿足題意的點(diǎn)的取值范圍是;13分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓C:+=1(a>b>0)過點(diǎn)(0,4),離心率為.

(1)C的方程;

(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,PC上的點(diǎn),PF2F1F2,PF1F2=30°,C的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題

設(shè)橢圓C:(a>b>0)的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4,
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C上一動(dòng)點(diǎn)P(x0,y0)關(guān)于直線y=2x的對(duì)稱點(diǎn)為P1(x1,y1),求3x1-4y1的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:=1(a>b>0)過點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:=1(a>b>0)過點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.

查看答案和解析>>

同步練習(xí)冊(cè)答案