已知正四棱錐P-ABCD,PA=2,AB=
2
,M是側(cè)棱PC的中點,則異面直線PA與BM所成角為
 
精英家教網(wǎng)
分析:先通過平移將兩條異面直線平移到同一個起點M,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.
解答:精英家教網(wǎng)解:如圖,連接AC,BD交與點O,
連接OM,∠OMB為異面直線PA與BM所成角
PA=2,OM=1,OB=1,BM=
2

cos∠OMB=
2
2
,
故答案為
π
4
點評:本小題主要考查異面直線所成的角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長,并求正四棱錐體積V的最大值;
(2)當V取最大值時,求異面直線AB和PD所成角的大。
(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知正四棱錐P—ABCD中,PA=2,AB=,M是側(cè)棱PC的中點,則異面直線PA與BM所成角的大小為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長,并求正四棱錐體積V的最大值;
(2)當V取最大值時,求異面直線AB和PD所成角的大小.
(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年北京市海淀區(qū)高三(上)期末數(shù)學試卷(理科)(解析版) 題型:填空題

已知正四棱錐P-ABCD,PA=2,AB=,M是側(cè)棱PC的中點,則異面直線PA與BM所成角為   

查看答案和解析>>

同步練習冊答案