已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長,并求正四棱錐體積V的最大值;
(2)當V取最大值時,求異面直線AB和PD所成角的大。
(結果用反三角函數(shù)值表示)

解:(1)設底面邊長為a,斜高為H,由題意a2+2aH=2,所以,(2分)
又因為,所以(4分)
因而,
當且僅當h=1時,體積最大,.(8分)
此時
(2)∠PDQ即為異面直線AB和PD所成的角.(11分)

所以異面直線AB和PD所成角的大小arctan3.(14分)
分析:(1)先設底面邊長為a,斜高為H,由題意a與H的關系,求得正四棱錐體積V的表達式,最后利用基本不等式求其最大值即可;
(2)先根據(jù)異面直線及其所成的角的定義得出∠PDQ即為異面直線AB和PD所成的角再在直角三角形中求出其正切值即得異面直線AB和PD所成角的大。
點評:本題是中檔題,考查直線與平面所成角的求法、棱柱、棱錐、棱臺的體積,考查空間想象能力,計算能力,熟練掌握基本定理、基本方法是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正四棱錐P-ABCD,PA=2,AB=
2
,M是側棱PC的中點,則異面直線PA與BM所成角為
 
精英家教網

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長,并求正四棱錐體積V的最大值;
(2)當V取最大值時,求異面直線AB和PD所成角的大。
(結果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知正四棱錐P—ABCD中,PA=2,AB=,M是側棱PC的中點,則異面直線PA與BM所成角的大小為__________.

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年北京市海淀區(qū)高三(上)期末數(shù)學試卷(理科)(解析版) 題型:填空題

已知正四棱錐P-ABCD,PA=2,AB=,M是側棱PC的中點,則異面直線PA與BM所成角為   

查看答案和解析>>

同步練習冊答案