用數(shù)學歸納法證明:“
1
n+1
+
1
n+2
+…+
1
3n+1
≥1( n∈N+)”時,在驗證初始值不等式成立時,左邊的式子應是“
 
”.
考點:數(shù)學歸納法
專題:計算題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:分析不等式左邊的項的特點,即可得出結(jié)論.
解答: 解:n=1時,左邊的式子是
1
2
+
1
3
+
1
4

故答案為:
1
2
+
1
3
+
1
4
點評:在利用數(shù)學歸納法證明問題中,第一步是論證n=1時結(jié)論是否成立,此時一定要分析不等式左邊的項的特點,不能多寫也不能少寫,否則會引起答案的錯誤.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足條件
x-y+4≥0
x+y≥0
x≤3
,則z=x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x,y滿足等式y(tǒng)2=x,那么
y
x+1
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是一個正方體的展開圖,在原來的正方體中,有下列命題:
①AB與EF所在的直線平行;
②AB與CD所在的直線異面;
③MN與BF所在的直線成60°角;
④MN與CD所在的直線互相垂直.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列
5
4
10
9
,
17
a+b
,
a-b
25
,…中,有序數(shù)對(a,b)可以是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x),其圖象為連續(xù)不斷的曲線,且滿足f(2+x)=f(-x),(x-1)f′(x)>0,若f(x)>f(x+2),則x∈
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為1,公差為2的等差數(shù)列,將數(shù)列{an}中的各項排成如圖所示的一個三角形數(shù)表,記A(i,j)表示第i行從左至右的第j個數(shù),例如A(4,3)=a9,則A(10,4)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2
1
3x2dx=
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a3+a6+3a7=20,則2a7-a8的值為
 

查看答案和解析>>

同步練習冊答案