如果實數(shù)x,y滿足等式y(tǒng)2=x,那么
y
x+1
的最大值是
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:由題意,
y
x+1
=
y
y2+1
,分類討論,利用基本不等式,即可求出
y
x+1
的最大值.
解答: 解:由題意,
y
x+1
=
y
y2+1

當(dāng)y=0時,
y
x+1
=0,
當(dāng)y≠0時,
y
y2+1
y
2
y2
=
1
2
,當(dāng)且僅當(dāng)y=±1取等號.
y
x+1
的最大值是
1
2

故答案為:
1
2
點評:本題考查拋物線的性質(zhì),考查基本不等式的運用,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查胃病是否與生活規(guī)律有關(guān),某地540名40歲以上的人的調(diào)查結(jié)果如下:
  患胃病 未患胃病 合計
生活不規(guī)律 60 260 320
生活有規(guī)律 20 200 220
合計 80 460 540
根據(jù)以上數(shù)據(jù)比較這兩種情況,40歲以上的人患胃病與生活規(guī)律有關(guān)嗎?
P (K2≥k0 0.01 0.005 0.001
k0 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)a+c(b+d)()

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈[0,4],則滿足不等式log
1
2
(x-1)>0的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)設(shè)A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k,則動點P的軌跡為雙曲線;
(2)若等比數(shù)列的前n項和sn=2n+k,則必有k=-1;
(3)若x∈R+,則2x+2-x的最小值為2;
(4)雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點;
(5)平面內(nèi)到定點(3,-1)的距離等于到定直線x+2y-1=0的距離的點的軌跡是拋物線.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將全體正整數(shù)排成一個三角形數(shù)陣:按照以上排列的規(guī)律,第n行(n≥2)從左向右的第2個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足任意的m,n∈N*有am-n=am+an+2mn成立,且a1=1,則a2014的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個角為30°,其終邊按逆時針方向轉(zhuǎn)三周得到的角的度數(shù)為
 
.若sin(-
π
2
-α)=-
1
3
,且tanα<0,那么cos(
2
+α)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:“
1
n+1
+
1
n+2
+…+
1
3n+1
≥1( n∈N+)”時,在驗證初始值不等式成立時,左邊的式子應(yīng)是“
 
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標xOy中,設(shè)圓M的半徑為1,圓心在直線x-y-1=0上,若圓M上不存在點N,使NO=
1
2
NA,其中A(0,3),則圓心M橫坐標的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案