18.已知△ABC的面積為S,且$\overrightarrow{BA}•\overrightarrow{CA}=S$.
(1)求tanA的值;
(2)若B=$\frac{π}{4},c=6$,求△ABC的面積S.

分析 (1)設出三角形的邊長,利用三角形的面積以及向量的數(shù)量積,轉化求解A的正切函數(shù)值.
(2)利用兩角和與差的三角函數(shù)轉化求解三角形的面積即可.

解答 解:(1)由$\overrightarrow{BA}•\overrightarrow{CA}=S$,設三角形的邊長為:a,b,c,則:bccosA═$\frac{1}{2}$bcsinA,
可得tanA=2.
(2)由(1)可知A∈(0,$\frac{π}{2}$),則sinA=$\frac{2\sqrt{5}}{5}$,cosA=$\frac{\sqrt{5}}{5}$,B=$\frac{π}{4},c=6$,
可得cosC=sin(A+B)=sinAcosB+cosAsinB═$\frac{2\sqrt{5}}{5}×\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{5}×\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{10}}{10}$,…(10分)
b=$\frac{csinB}{sinC}$=$\frac{6×\frac{\sqrt{2}}{2}}{\sqrt{1-(\frac{3\sqrt{10}}{10})^{2}}}$=2$\sqrt{5}$.
故S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×2\sqrt{5}×6×\frac{2\sqrt{5}}{5}$=12.…(12分)

點評 本題考查向量的數(shù)量積以及正弦定理,兩角和與差的三角函數(shù),考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.《九章算術》是我國古代內(nèi)容極為豐富的一部數(shù)學專著,書中有如下問題:今有女子善織,日增等尺,七日織28尺,第二日,第五日,第八日所織之和為15尺,則第九日所織尺數(shù)為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.計算:$\frac{1{2}^{0}-{3}^{2}×{6}^{-1}×{2}^{2}}{-{3}^{-2}}$×5-1=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.有共同底邊的等邊三角形ABC和BCD所在平面互相垂直,則異面直線AB和CD所成角的余弦值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,小方格是邊長為1的正方形,一個幾何體的三視圖如圖,則幾何體的表面積為(  )
A.4$\sqrt{5}π+96$B.(2$\sqrt{5}+6$)π+96C.(4$\sqrt{5}+4$)π+64D.(4$\sqrt{5}$+4)π+96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知偶函數(shù)y=f(x)對于任意的x∈[0,$\frac{π}{2}$)滿足f′(x)cosx+f(x)sinx>0,(其中f′(x)是函數(shù)f(x)的導函數(shù)),則下列不等式中成立的是( 。
A.$\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$)B.$\sqrt{2}$f(-$\frac{π}{3}$)<f(-$\frac{π}{4}$)C.f(0)$>\sqrt{2}$f(-$\frac{π}{4}$)D.f($\frac{π}{4}$)$<\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設{an}是首項為a1,公比為q的等比數(shù)列,則“a1q>0”是“{an}為遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設x,y∈R,向量$\overrightarrow{a}$=(x,2),$\overrightarrow$=(1,y),$\overrightarrow{c}$=(2,-6),且$\overrightarrow{a}$⊥$\overrightarrow{c}$,$\overrightarrow$∥$\overrightarrow{c}$,則|$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知A(1,0,0),B(0,1,0),C(0,0,1)三點,向量$\overrightarrow{n}$=(1,1,1),試判斷以$\overrightarrow{n}$為方向向量的直線l與平面ABC的位置關系.

查看答案和解析>>

同步練習冊答案