【題目】已知函數(shù).
(1)若為單調(diào)函數(shù),求a的取值范圍;
(2)若函數(shù)僅一個零點(diǎn),求a的取值范圍.
【答案】(1)(2)或
【解析】
(1)對求導(dǎo)得,因?yàn)?/span>為單調(diào)函數(shù),故或恒成立,利用導(dǎo)數(shù)研究或哪個能成立即可;
(2)因?yàn)?/span>,所以是的一個零點(diǎn),由(1)可知,當(dāng)時,為上的增函數(shù),所以僅有一個零點(diǎn),滿足題意,當(dāng)時,得,分,,討論驗(yàn)證即可.
解析:(1)由(),得
,
因?yàn)?/span>為單調(diào)函數(shù),
所以當(dāng)時,或恒成立,
由于,于是只需或對于恒成立,
令,則,
當(dāng)時,,所以為增函數(shù),
則.又當(dāng)時,,
則不可能恒成立,即不可能為單調(diào)減函數(shù).
當(dāng),即時,恒成立,
此時函數(shù)為單調(diào)遞增函數(shù).
(2)因?yàn)?/span>,所以是的一個零點(diǎn).
由(1)知,當(dāng)時,為的增函數(shù),
此時關(guān)于x的方程僅一解,即函數(shù)僅一個零點(diǎn),滿足條件.
當(dāng)時,由得,
(。┊(dāng)時,,
則,
令,
易知為的增函數(shù),且,
所以當(dāng)時,,即,為減函數(shù),
當(dāng)時,,即,為增函數(shù),
所以,
在上恒成立,且僅當(dāng),于是函數(shù)僅一個零點(diǎn).
所以滿足條件.
(ⅱ)當(dāng)時,由于在為增函數(shù),
則,當(dāng)時,.
則存在,使得,即使得,
當(dāng)時,,
當(dāng)時,,
所以,且當(dāng)時,.
于是當(dāng)時存在的另一解,不符合題意,舍去.
(ⅲ)當(dāng)時,則在為增函數(shù),
又,,
所以存在,使得,也就使得,
當(dāng)時,,
當(dāng)時,,
所以,且當(dāng)時,.
于是在時存在的另一解,不符合題意,舍去.
綜上,a的取值范圍為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個數(shù)是( )
①直線上有兩個點(diǎn)到平面的距離相等,則這條直線和這個平面平行;
②為異面直線,則過且與平行的平面有且僅有一個;
③直四棱柱是直平行六面體;
④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點(diǎn),且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)過點(diǎn)的任一條直線與軌跡交于不同的兩點(diǎn),試探究在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:上一點(diǎn)到焦點(diǎn)的距離為4,動直線交拋物線于坐標(biāo)原點(diǎn)O和點(diǎn)A,交拋物線的準(zhǔn)線于點(diǎn)B,若動點(diǎn)P滿足,動點(diǎn)P的軌跡C的方程為.
(1)求出拋物線的標(biāo)準(zhǔn)方程;
(2)求動點(diǎn)P的軌跡方程;
(3)以下給出曲線C的四個方面的性質(zhì),請你選擇其中的三個方面進(jìn)行研究:①對稱性;②范圍;③漸近線;④時,寫出由確定的函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形.
若在圖④中隨機(jī)選。c(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn).
(1)若為線段上的動點(diǎn),證明:平面平面;
(2)若為線段,,上的動點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽《九章算術(shù)商功》中將底面為長方形,兩個三角面與底面垂直的四棱錐體叫做陽馬.如圖,是一個陽馬的三視圖,則其外接球的體積為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市交通管理部門為了解市民對機(jī)動車“單雙號限行”的態(tài)度,隨機(jī)采訪了100名市民,將他們的意見和是否擁有私家車的情況進(jìn)行了統(tǒng)計,得到了如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計 | |
沒有私家車 | 15 | ||
有私家車 | 45 | ||
合計 | 100 |
已知在被采訪的100人中隨機(jī)抽取1人且抽到“贊同限行”者的概率是.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過0.10的前提下認(rèn)為“對限行的態(tài)度與是否擁有私家車有關(guān)”;
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機(jī)抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
附:參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com