已知長(zhǎng)方形ABCD的AB=3,AD=4.AC∩BD=O.將長(zhǎng)方形ABCD沿對(duì)角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.過(guò)A作BD的垂線交BD于E.

(1)問(wèn)a為何值時(shí),AE⊥CD;
(2)當(dāng)二面角A-BD-C的大小為90°時(shí),求二面角A-BC-D的正切值.
【答案】分析:(1)在△ABD中,AE⊥BD,根據(jù)AB=3,AD=4,可得BD=5,AE=,DE=,利用余弦定理可求CE,利用△ACE為直角三角形,可求AC的長(zhǎng);
(2)證明AE⊥面BCD,過(guò)E作BC的垂線交BC于F,連接AF,可得∠AFE就是二面角A-BC-D的平面角,進(jìn)而可求二面角A-BC-D的正切值.
解答:(1)證明:根據(jù)題意,在△ABD中,AE⊥BD,
∵AB=3,AD=4,∴BD=5,∴AE=
∴DE=
∵cos∠BDC=,∴
當(dāng)△ACE為直角三角形時(shí),有,即時(shí),△ACE為直角三角形
此時(shí)∵AE⊥BD,AE⊥EC,BD∩EC=E
∴AE⊥面BCD,∴AE⊥CD. 
(2)解:∵二面角A-BD-C的大小為90°,AE⊥BD,∴AE⊥面BCD,
過(guò)E作BC的垂線交BC于F,連接AF,
∵AE⊥BC,BC⊥EF,∴BC⊥面AEF,∴BC⊥AF,
∴∠AFE就是二面角A-BC-D的平面角,
∵EF=,而AE=,

點(diǎn)評(píng):本題考查線面垂直,考查面面角,解題的關(guān)鍵是掌握線面垂直的判定,正確作出面面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方形ABCD的一組鄰邊長(zhǎng)分別為3、4,沿對(duì)角線AC折成一個(gè)三棱錐,若記二面角B-AC-D的大小為θ( 0<θ<
π2
),則該三棱錐的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知長(zhǎng)方形ABCD的兩條對(duì)角線的交點(diǎn)為E(1,0),且AB與BC所在的直線方程分別為:x+3y-5=0與ax-y+5=0.
(1)求a的值;
(2)求DA所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方形ABCD的AB=3,AD=4.AC∩BD=O.將長(zhǎng)方形ABCD沿對(duì)角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.過(guò)A作BD的垂線交BD于E.

(1)問(wèn)a為何值時(shí),AE⊥CD;
(2)當(dāng)二面角A-BD-C的大小為90°時(shí),求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年浙江省溫州市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知長(zhǎng)方形ABCD的兩條對(duì)角線的交點(diǎn)為E(1,0),且AB與BC所在的直線方程分別為:x+3y-5=0與ax-y+5=0.
(1)求a的值;
(2)求DA所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省名校高考數(shù)學(xué)信息卷2(文理合卷)(解析版) 題型:解答題

已知長(zhǎng)方形ABCD的一組鄰邊長(zhǎng)分別為3、4,沿對(duì)角線AC折成一個(gè)三棱錐,若記二面角B-AC-D的大小為θ( 0<θ<),則該三菱錐的外接球的體積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案