在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.

(Ⅰ)若,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;

(Ⅱ)若,工作臺(tái)從左到右的人數(shù)依次為,,,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

 

【答案】

(Ⅰ)設(shè)供應(yīng)站坐標(biāo)為,根據(jù)兩點(diǎn)間距離最短,列出各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為,然后分段討論,去掉絕對(duì)值符號(hào),化為分段函數(shù),求函數(shù)取最小值滿足的條件即可.(Ⅱ)同(Ⅰ)首先列出各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為 ,然后分段討論,去掉絕對(duì)值符號(hào),化為分段函數(shù),求函數(shù)取最小值滿足的條件即可.

【解析】

試題分析:設(shè)供應(yīng)站坐標(biāo)為,各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為

(Ⅰ)       2分

當(dāng)時(shí),在區(qū)間上是減函數(shù);

當(dāng)時(shí),在區(qū)間上是增函數(shù).

則當(dāng)時(shí),式取最小值,即供應(yīng)站的位置為內(nèi)的任意一點(diǎn).    

(Ⅱ)由題設(shè)知,各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為

.          7分

類似于(Ⅰ)的討論知,,且有

          

所以,函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),在區(qū)間上是常數(shù).故供應(yīng)站位置位于區(qū)間上任意一點(diǎn)時(shí),均能使函數(shù)取得最小值,且最小值為.               13分

考點(diǎn):綜合運(yùn)用函數(shù)知識(shí)解決實(shí)際問(wèn)題的能力

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一條筆直的工藝流水線上有n個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為x1,x2,…,xn,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若n=3,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若n=5,工作臺(tái)從左到右的人數(shù)依次為3,2,1,2,2,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南省高考適應(yīng)性測(cè)試數(shù)學(xué)(文) 題型:解答題

(本小題滿分13分)
在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在之間修建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)設(shè)工作臺(tái)從左到右的人數(shù)依次為,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

圖5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省煙臺(tái)市高三上學(xué)期模塊檢測(cè)數(shù)學(xué)文卷 題型:解答題

本題滿分12分)

在一條筆直的工藝流水線上有三個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在之間修建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.

(1)若每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;

(2)設(shè)三個(gè)工作臺(tái)從左到右的人數(shù)依次為2,1,3,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南省高考適應(yīng)性測(cè)試數(shù)學(xué)(理) 題型:解答題

(本小題滿分13分)
在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若,工作臺(tái)從左到右的人數(shù)依次為,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案