本題滿(mǎn)分12分)

在一條筆直的工藝流水線(xiàn)上有三個(gè)工作臺(tái),將工藝流水線(xiàn)用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在之間修建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.

(1)若每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;

(2)設(shè)三個(gè)工作臺(tái)從左到右的人數(shù)依次為2,1,3,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

 

【答案】

 

(1)故當(dāng)時(shí),取最小值,此時(shí)供應(yīng)站的位置為

(2)函數(shù)在區(qū)間()上是減函數(shù),在區(qū)間[]上是常數(shù).故供應(yīng)站位置位于區(qū)間[]上任意一點(diǎn)時(shí),均能使函數(shù)取得最小值,且最小值為

【解析】解:設(shè)供應(yīng)站坐標(biāo)為,各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為

(1)由題設(shè)知,,所以

………………………………………………3分

故當(dāng)時(shí),取最小值,此時(shí)供應(yīng)站的位置為……………………………………5分

(2)由題設(shè)知,,所以各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為[來(lái)源:]

………………………………………………………………8分

…………………………………………………………10分

因此,函數(shù)在區(qū)間()上是減函數(shù),在區(qū)間[]上是常數(shù).故供應(yīng)站位置位于區(qū)間[]上任意一點(diǎn)時(shí),均能使函數(shù)取得最小值,且最小值為……………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)

在△ABC中,角A、B、C的對(duì)邊分別為ab、c,且

??????(Ⅰ)求角A的大小;??????(Ⅱ)若,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)

在平面直角坐標(biāo)系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若實(shí)數(shù)λ使向量,λ,滿(mǎn)足λ2·(2=·

(1)求點(diǎn)P的軌跡方程,并判斷P點(diǎn)的軌跡是怎樣的曲線(xiàn);

(2)當(dāng)λ=時(shí),過(guò)點(diǎn)A1且斜率為1的直線(xiàn)與此時(shí)(1)中的曲線(xiàn)相交的另一點(diǎn)為B,能否在直線(xiàn)x=-9上找一點(diǎn)C,使ΔA1BC為正三角形(請(qǐng)說(shuō)明理由)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧沈陽(yáng)二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(cè)(二)文數(shù)學(xué)卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)在分別為A,B,C所對(duì)的邊,

(1)判斷的形狀;

(2)若,求的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆云南大理州賓川四中高二下學(xué)期4月考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)在各項(xiàng)為正的數(shù)列中,數(shù)列的前n項(xiàng)和滿(mǎn)足

(1)求;(2) 由(1)猜想數(shù)列的通項(xiàng)公式;(3) 求

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆云南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿(mǎn)分12分)在邊長(zhǎng)為2的正方體中,E是BC的中點(diǎn),F(xiàn)是的中點(diǎn)

(Ⅰ)求證:CF∥平面

(Ⅱ)求二面角的平面角的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案