【題目】已知f(x)= sinxcosx+cos2x,銳角△ABC的三個角A,B,C所對的邊分別為a,b,c. (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若f(C)=1,求m= 的取值范圍.
【答案】解:(Ⅰ) .∴函數(shù)f(x)的最小正周期 .
由 是單調(diào)遞增,
解得: .
∴函數(shù)f(x)的單調(diào)遞增區(qū)間 ,最小正周期為π.
(Ⅱ)由(Ⅰ)可得f(C)=sin(2C+ )=1
∴ .
∴
∴ 或 k∈Z,
∵△ABC是銳角三角形,
∴ .
由余弦定理c2=a2+b2﹣2abcosC,可得c2=a2+b2﹣ab
∴ .
∵△ABC為銳角三角形
∴ ∴ .
由正弦定理得: .
∴
【解析】(Ⅰ)將f(x)化簡,結合三角函數(shù)的性質(zhì)求解即可.(Ⅱ)利用f(C)=1,求解角C,由余弦定理建立等式關系,利用三角函數(shù)的有界限求解范圍.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( )
A. 有兩個面平行,其余各面都是四邊形的幾何體叫棱柱
B. 有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱
C. 用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺
D. 有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若以直角坐標系xOy的O為極點,Ox為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程是ρ= .
(1)將曲線C的極坐標方程化為直角坐標方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為 (t為參數(shù))當直線l與曲線C相交于A,B兩點,求| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1 , F2分別為橢圓C1: (a>b>0)的上下焦點,其F1是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|= .
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足 ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=sinωx(>0)的圖象向右平移 個單位得到函數(shù)y=g(x)的圖象,并且函數(shù)g(x)在區(qū)間[ , ]上單調(diào)遞增,在區(qū)間[ ]上單調(diào)遞減,則實數(shù)ω的值為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數(shù)方程為 (α為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+ )= .l與C交于A、B兩點. (Ⅰ)求曲線C的普通方程及直線l的直角坐標方程;
(Ⅱ)設點P(0,﹣2),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點E是棱PC的中點,平面ABE與棱PD交于點F. (Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com