已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球, 乙盒內(nèi)有大小相同的2個(gè)紅球和4個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(1)求取出的4個(gè)球均為黑球的概率;
(2)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(3)設(shè)為取出的4個(gè)球中紅球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望

(1);(2);(3)分布列(略),.

解析試題分析:(1)4個(gè)球均為黑球,即從甲、乙中取出的2個(gè)球均為黑球,由于甲、乙相互獨(dú)立,因此概率為甲中取出黑球的概率與乙中取出黑球概率的乘積;(2)取出4球中恰有1個(gè)紅球,分兩類計(jì)算:一類紅球來(lái)至于甲,二類紅球來(lái)至于乙;(3)紅球個(gè)數(shù)可能取值為0,1,2,3,注意分別對(duì)應(yīng)概率的計(jì)算.
試題解析:
(1)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,
“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件
由于事件相互獨(dú)立,且,.        2分
故取出的4個(gè)球均為黑球的概率為.     4分
(2) 設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.則
,.    6分
由于事件互斥,故取出的4個(gè)球中恰有1個(gè)紅球的概率為
.                              8分
(3)可能的取值為
由(1),(2)得,,
從而
的分布列為    


0
1
2
3
 




 
的數(shù)學(xué)期望.             12分
考點(diǎn):組合與概率綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋中裝著分別標(biāo)有數(shù)字1,2,3,4,5的5個(gè)形狀相同的小球.
(1)從袋中任取2個(gè)小球,求兩個(gè)小球所標(biāo)數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個(gè)小球,記第一次取出的小球所標(biāo)數(shù)字為x,第二次為y,求點(diǎn)滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù), (1) 求的最小值;(2)求恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)均勻的正方體玩具,各個(gè)面上分別寫有1,2,3,4,5,6,將這個(gè)玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;(2)朝上的一面數(shù)之和小于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)布袋里有3個(gè)紅球,2個(gè)白球共5個(gè)球. 現(xiàn)抽取3次,每次任意抽取2個(gè),并待放回后再抽下一次.求:
(1)3次抽取中,每次取出的2個(gè)球都是1個(gè)白球和1個(gè)紅球的概率;
(2)3次抽取中,有2次取出的2個(gè)球是1個(gè)白球和1個(gè)紅球,還有1次取出的2個(gè)球同色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:
(1)兩數(shù)之和為6的概率;
(2)兩數(shù)之積是6的倍數(shù)的概率;
(3)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某中學(xué)在運(yùn)動(dòng)會(huì)期間舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的,已知小明每次投籃投中的概率都是
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).學(xué)科網(wǎng)設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

取一個(gè)邊長(zhǎng)為的正方形及其內(nèi)切圓,隨機(jī)向正方形內(nèi)丟一粒豆子,則豆子落入圓內(nèi)的概率是       ;

查看答案和解析>>

同步練習(xí)冊(cè)答案