【題目】已知直線與曲線分別交于兩點,點的坐標(biāo)為,則面積的最小值為( )

A. B. C. D.

【答案】C

【解析】

求出SABC2|BC|=et+t2t+2,令ft)=et+t2t+2,t∈R,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出三角形面積的最小值即可.

由已知得Bt,et),Ct,﹣t2+t﹣2),

則|BC|=et+t2t+2,

SABC2|BC|=et+t2t+2,

ft)=et+t2t+2,t∈R,

f′(t)=et+2t﹣1,

f′(t)在R遞增,又f′(0)=0,

t>0時,f′(t)>0,t<0時,f′(t)<0,

ft)在(﹣∞,0)遞減,在區(qū)間(0,+∞)遞增,

ftmine0+0﹣0+2=3,

SABC的最小值是3,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

40

女生

30

合計

100

且已知在100個人中隨機抽取1人,抽到喜歡游泳的學(xué)生的概率為

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由.

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于MN兩點。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程;

(2)過的直線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地需要修建一條大型輸油管道通過720千米寬的荒漠地帶,該段輸油管道兩端的輸油站已建好,余下工程只需要在該段兩端已建好的輸油站之間鋪設(shè)輸油管道和等距離修建增壓站(又稱泵站).經(jīng)預(yù)算,修建一個增壓站的工程費用為108萬元,鋪設(shè)距離為千米的相鄰兩增壓站之間的輸油管道費用為萬元.設(shè)余下工程的總費用為萬元.

1)試將表示成關(guān)于的函數(shù);

2)需要修建多少個增壓站才能使總費用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了增加某種產(chǎn)品的生產(chǎn)能力,提出甲、乙兩個方案。甲方案是廢除原有生產(chǎn)線并引進一條新生產(chǎn)線,需一次性投資1000萬元,年生產(chǎn)能力為300噸;乙方案是改造原有生產(chǎn)線,需一次性投資700萬元,年生產(chǎn)能力為200噸;根據(jù)市場調(diào)查與預(yù)測,該產(chǎn)品的年銷售量的頻率分布直方圖如圖所示,無論是引進新生產(chǎn)線還是改造原有生產(chǎn)線,設(shè)備的使用年限均為6年,該產(chǎn)品的銷售利潤為1.5萬元/噸。

(Ⅰ)根據(jù)年銷售量的頻率分布直方圖,估算年銷量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點值作年銷量的估計值,并假設(shè)每年的銷售量相互獨立。

(i)根據(jù)頻率分布直方圖估計年銷售利潤不低于270萬的概率;

(ii)以企業(yè)6年的凈利潤的期望值作為決策的依據(jù),試判斷該企業(yè)應(yīng)選擇哪個方案。(6年的凈利潤=6年銷售利潤-投資費用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一場小型晚會有個唱歌節(jié)目和個相聲節(jié)目,要求排出一個節(jié)目單.

1個相聲節(jié)目要排在一起,有多少種排法?

2個相聲節(jié)目彼此要隔開,有多少種排法?

3)第一個節(jié)目和最后一個節(jié)目都是唱歌節(jié)目,有多少種排法?

4)前個節(jié)目中要有相聲節(jié)目,有多少種排法?

(要求:每小題都要有過程,且計算結(jié)果都用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體中,底面ABCD的長AB=4,寬BC=4,高=3,點M,N分別是BC,的中點,點P在上底面中,點Q上,若,則PQ長度的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,垂直平面,,,,的中點.

(Ⅰ) 證明:平面平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案