已知等差數(shù)列{an}滿足:a1+a2n-1=2n,(n∈N*),設(shè)Sn是數(shù)列{}的前n項(xiàng)和,記f(n)=S2n-Sn,
(1)求an;(n∈N*)
(2)比較f(n+1)與f(n)的大;(n∈N*)
(3)如果函數(shù)g(x)=log2x-12f(n)(其中x∈[a,b])對(duì)于一切大于1的自然數(shù)n,其函數(shù)值都小于零,那么a、b應(yīng)滿足什么條件?
【答案】分析:(1)因?yàn)閿?shù)列{an}為等差數(shù)列,所以數(shù)列中的每一項(xiàng)均可用首項(xiàng)和公差表示,代入a1+a2n-1=2n,即可求出an
(2)根據(jù)等差數(shù)列的通項(xiàng)公式,求出函數(shù)f(n)的表達(dá)式,再用作差法比較f(n+1)與f(n)的大。
(3)如果函數(shù)g(x)=log2x-12f(n)(其中x∈[a,b])對(duì)于一切大于1的自然數(shù)n,其函數(shù)值都小于零,則log2x-12f(n)<0恒成立,即當(dāng)x∈[a,b]時(shí),log2x小于12f(n)的最小值,根據(jù)f(n)的單調(diào)性求出最小值即可.
解答:解:(1)設(shè)an=a1+(n-1)d,(n∈N*),由a1+a2n-1=2n,得a1+a1+(2n-1-1)d=2n,
所以an=n
(2)由Sn=++…+=++…+
f(n)=S2n-Sn=(++…+)-(++…+)=++…+
因?yàn)閒(n+1)-f(n)=(++…+)-(++…+
=+-
=>0
所以f(n+1)>f(n) 
(3)由(2)可知:數(shù)列{f(n)}的項(xiàng)的取值是隨n的增大而增大,
當(dāng)n≥2時(shí),f(n)的最小值為f(2)==
由函數(shù)y=log2x的性質(zhì)可知,在區(qū)間(0,27)上的函數(shù)值恒小于7,
所以a、b應(yīng)滿足條件0<a<b<27
點(diǎn)評(píng):本題主要考查了函數(shù)與數(shù)列的綜合運(yùn)用,注意兩個(gè)知識(shí)點(diǎn)的結(jié)合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案