【題目】已知正四棱錐PABCD如圖.

)若其正視圖是一個邊長分別為,2的等腰三角形,求其表面積S、體積V

)設AB中點為M,PC中點為N,證明:MN平面PAD

【答案】)詳見解析

【解析】

試題分析:(I)作出棱錐的高和斜高,利用勾股定理求出棱錐的高,代入面積,體積公式計算;(II)取PD的中點Q,證明AMNQ是平行四邊形得出MNAQ,于是MN平面PAD

試題解析:I)過PPECDE,過PPO平面ABCD,垂足為O,

PECD,ECD的中點,O為正方形ABCD的中心.

正四棱錐的正視圖是一個邊長分別為、,2的等腰三角形,

PE=BC=CD=2,

OE=PO==

正四棱錐的表面積S=S正方形ABCD+4SPCD=22+4×=4+4

正四棱錐的體積V===

II)過NNQCD,連結AQ

NPC的中點,QPD的中點,

NQCD,又AMCD,

AMNQ

四邊形AMNQ是平行四邊形,

MNAQ,又MN平面PAD,AQ平面PAD,

MN平面PAD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)處的切線與直線垂直.

(Ⅰ)求實數(shù)的值;

(Ⅱ)若函數(shù)存在單調遞減區(qū)間,求實數(shù)的取值范圍;

(Ⅲ)設是函數(shù)的兩個極值點,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(1,1)上的奇函數(shù)fx),在x1,0)時,fx=2x+2x

(1)求fx)在(1,1)上的表達式;

(2)用定義證明fx)在(1,0)上是減函數(shù);

3)若對于x01)上的每一個值,不等式m2xfx)<4x1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用隨機模擬方法求得某幾何概型的概率為m,其實際概率的大小為n,(  )

A. m>n B. m<n

C. m=n D. mn的近似值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個關于圓錐曲線的命題中

為兩個定點,為非零常數(shù),,則動點的軌跡為雙曲線;

方程的兩根可分別作為橢圓和雙曲線的離心率;

設定圓上一定點作圓的動點弦,為坐標原點,若,則動點的軌跡為橢圓;

過點作直線,使它與拋物線僅有一個公共點,這樣的直線有3條;

其中真命題的序號為_________________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了參加市高中籃球比賽,某中學決定從四個籃球較強的班級的籃球隊員中選出人組成男子籃球隊,代表該地區(qū)參賽,四個籃球較強的班級籃球隊員人數(shù)如下表:

班級

高三7

高三17

高二31

高二32

人數(shù)

12

6

9

9

1現(xiàn)采取分層抽樣的方法從這四個班中抽取運動員,求應分別從這四個班抽出的隊員人數(shù);

2該中學籃球隊奮力拼搏,獲得冠軍.若要從高三年級抽出的隊員中選出兩位隊員作為冠軍的代表發(fā)言,求選出的兩名隊員來自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)的單調區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個不同的極值點,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有兩個分類變量XY的一組數(shù)據,由其列聯(lián)表計算得k≈4.523,則認為“XY有關系犯錯誤的概率為( )

A. 95% B. 90% C. 5% D. 10%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的通項公式,數(shù)列滿足,為數(shù)列的前項和。

I;

II若對任意的不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案