如果橢圓上一點到焦點的距離等于6,則點到另一個焦點的距離為____
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓(a>b>0)的左焦點為F1(-2,0),左準線 L1 與x軸交于點N(-3,0),過點N且傾斜角為300的直線L交橢圓于A、B兩點。
(1)求直線L和橢圓的方程;
(2)求證:點F1(-2,0)在以線段AB為直徑的圓上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
已知橢圓的中心在坐標原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線且與橢圓相交于A,B兩點,當P是AB的中點時,
求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的離心率為短軸一個端點到右焦點的
距離為.
(Ⅰ)求橢圓C的方程;    
(Ⅱ)設(shè)直線l與橢圓C交于AB兩點,坐標原點O到直線l的距離為,求△AOB面積的
最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個頂點為(-2,0),焦點在x軸上,且離心率為.
(1)求橢圓的標準方程.
(2)斜率為1的直線L與橢圓交于A、B兩點,O為原點,當△AOB的面積為時,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知點P(4,4),圓C與橢圓E:
有一個公共點A(3,1),F1F2分別是橢圓的左.右焦點,直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個動點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線交曲線C于x軸上方兩個不同點P、Q,點P關(guān)于x軸的對稱點為M,設(shè)
(I)求,求直線的斜率k的取值范圍;
(II)求證:直線MQ過定點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.橢圓與直線交于、兩點,且,其
為坐標原點。
1)求的值;
2)若橢圓的離心率滿足,求橢圓長軸的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長軸長、焦距和短軸長成等差數(shù)列,則橢圓的離心率為           (    )
              

查看答案和解析>>

同步練習冊答案