以拋物線y2=-8x的焦點(diǎn)為圓心,并且與此拋物線的準(zhǔn)線相切的圓的方程為( )
A.(x-1)2+y2=4
B.(x-2)2+y2=16
C.(x+2)2+y2=4
D.(x+2)2+y2=16
【答案】分析:找出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,確定圓心和半徑,從而求出圓的標(biāo)準(zhǔn)方程.
解答:解:拋物線y2=-8x的焦點(diǎn)(-2,0),準(zhǔn)線方程為:x=2,
∴以拋物線y2=-8x的焦點(diǎn)為圓心,并且與此拋物線的準(zhǔn)線相切的圓的半徑是4,
∴以拋物線y2=-8x的焦點(diǎn)為圓心,并且與此拋物線的準(zhǔn)線相切的圓的方程為;(x+2)2+y2=16,
故答案選 D.
點(diǎn)評(píng):本題考查拋物線的性質(zhì)及求圓的標(biāo)準(zhǔn)方程的方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•青浦區(qū)二模)以拋物線y2=8x的頂點(diǎn)為中心,焦點(diǎn)為右焦點(diǎn),且以y=±
3
x
為漸近線的雙曲線方程是
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以拋物線y2+8x=0的頂點(diǎn)為中心、焦點(diǎn)為一個(gè)頂點(diǎn)且離心率e=2的雙曲線的標(biāo)準(zhǔn)方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)巳知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)(a>b>0)以拋物線y2=8x的焦點(diǎn)為頂點(diǎn),且離心率為
1
2

(I)求橢圓E的方程;
(II)若直線l:y=kx+m與橢圓E相交于A、B兩點(diǎn),與直線x=-4相交于Q點(diǎn),P是 橢圓E上一點(diǎn)且滿足
OP
=
OA
+
OB
(其中O為坐標(biāo)原點(diǎn)),試問在x軸上是否存在一點(diǎn)T,使得
OP
TQ
為定值?若存在,求出點(diǎn)了的坐標(biāo)及
OP
TQ
的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭一模)以拋物線y2=8x的頂點(diǎn)為中心,焦點(diǎn)為右焦點(diǎn),且以y=±
3
x
為漸近線的雙曲線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以拋物線y2=8x的焦點(diǎn)為焦點(diǎn),且離心率為
1
2
的橢圓的標(biāo)準(zhǔn)方程為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案