(2012•汕頭一模)以拋物線y2=8x的頂點(diǎn)為中心,焦點(diǎn)為右焦點(diǎn),且以y=±
3
x
為漸近線的雙曲線方程是( 。
分析:由題意設(shè)雙曲線方程為
x2
λ
-
y2
=1
.再由雙曲線的右焦點(diǎn)為(2,0),求出λ的值,進(jìn)而得到雙曲線方程.
解答:解:∵雙曲線的漸近線為y=±
3
x,
∴設(shè)雙曲線方程為
x2
λ
-
y2
=1

∵y2=8x的頂點(diǎn)為(0,0),焦點(diǎn)為(2,0),
∴雙曲線的右焦點(diǎn)為(2,0).
∴λ+3λ=4,λ=1.
∴雙曲線方程為x2-
y2
3
=1

故選A.
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭一模)(坐標(biāo)系與參數(shù)方程選做題)過(guò)點(diǎn)(2,
π
3
)
且平行于極軸的直線的極坐標(biāo)方程為
ρsinθ=
3
ρsinθ=
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭一模)(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭一模)某商店經(jīng)銷(xiāo)一種洗衣粉,年銷(xiāo)售總量為6000包,每包進(jìn)價(jià)為2.8元,銷(xiāo)售價(jià)為3.4元,全年分若干次進(jìn)貨,每次進(jìn)貨均為x包,已知每次進(jìn)貨的運(yùn)輸勞務(wù)費(fèi)為62.5元,全年保管費(fèi)為1.5x元.
(Ⅰ)將該商店經(jīng)銷(xiāo)洗衣粉一年的利潤(rùn)y(元)元表示為每次進(jìn)貨量x(包)的函數(shù);
(Ⅱ)為使利潤(rùn)最大,每次應(yīng)進(jìn)貨多少包?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭一模)如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E為DB的中點(diǎn).
(Ⅰ)證明:AE⊥BC;
(Ⅱ)若點(diǎn)F是線段BC上的動(dòng)點(diǎn),設(shè)平面PFE與平面PBE所成的平面角大小為θ,當(dāng)θ在[0,
π4
]內(nèi)取值時(shí),直線PF與平面DBC所成的角為α,求tanα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭一模)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;
(3)求三棱錐F-CBE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案