設(shè)橢圓M:(a>b>0)的離心率與雙曲線(xiàn)
的離心率互為倒數(shù),且內(nèi)切于圓.
(1)求橢圓M的方程;
(2)若直線(xiàn)交橢圓于A、B兩點(diǎn),橢圓上一點(diǎn),
求△PAB面積的最大值.
解:(1)雙曲線(xiàn)的離心率為,則橢圓的離心率為 ……………2分
得:
所求橢圓M的方程為. ………………………………………6分
(2 ) 直線(xiàn)的直線(xiàn)方程:.
由,得,
由,得
∵, .
∴
………………………………………9分
又到的距離為.
則
當(dāng)且僅當(dāng)取等號(hào)
∴. ………………………………………………12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年豐臺(tái)區(qū)期末文)(14分)
設(shè)橢圓M:(a>b>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F。
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)過(guò)右焦點(diǎn)F傾斜角為的直線(xiàn)交橢M于A,B兩點(diǎn),求證| AB | =。查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)橢圓M:(a>b>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F傾斜角為的直線(xiàn)交橢圓M于A,B兩點(diǎn)。
(Ⅰ)求橢圓M的方程;
(Ⅱ)求證| AB | =;
(Ⅲ)設(shè)過(guò)右焦點(diǎn)F且與直線(xiàn)AB垂直的直線(xiàn)交橢圓M于C,D,求|AB| + |CD|的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三4月模擬考試文科數(shù)學(xué)卷 題型:解答題
設(shè)橢圓M:(a>b>0)的離心率與雙曲線(xiàn)
的離心率互為倒數(shù),且內(nèi)切于圓.
(1)求橢圓M的方程;
(2)若直線(xiàn)交橢圓于A、B兩點(diǎn),橢圓上一點(diǎn),
求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010河北省高三押題考試數(shù)學(xué)卷 題型:解答題
設(shè)橢圓M:(a>b>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F傾斜角為的直線(xiàn)交橢圓M于A,B兩點(diǎn)。
(Ⅰ)求橢圓M的方程;
(2)設(shè)過(guò)右焦點(diǎn)F且與直線(xiàn)AB垂直的直線(xiàn)交橢圓M于C,D,求|AB| + |CD|的最小
值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河北省2009-2010屆高三押題卷數(shù)學(xué)試卷文 題型:解答題
設(shè)橢圓M:(a>b>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F傾
斜角為的直線(xiàn)交橢圓M于A,B兩點(diǎn)。
(Ⅰ)求橢圓M的方程;
(2)設(shè)過(guò)右焦點(diǎn)F且與直線(xiàn)AB垂直的直線(xiàn)交橢圓M于C,D,求|AB| + |CD|的最小
值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com