已知曲線
x2
m-1
-
y2
m-2
=1
表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍為_(kāi)_____.
x2
m-1
-
y2
m-2
=1
表示焦點(diǎn)在y軸上的橢圓,
∴2-m>m-1>0
解得 1<m<2
故答案為:1<m<2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
m
+
y2
n
=1
與雙曲線
x2
p
-
y2
q
=1
(m,n,p,q∈R+)有共同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)公共交點(diǎn).則|PF1|•|PF2|的值是( 。
A、p2-m2
B、p-m
C、m-p
D、m2-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的方程是
x2m
+y2=1 (m∈R
,且m≠0),給出下面三個(gè)命題:
①若曲線C表示圓,則m=1;
②若曲線C表示橢圓,則m的值越大,橢圓的離心率越大;
③若曲線C表示雙曲線,則m的值越大,雙曲線的離心率越。
其中正確的命題是
 
. (填寫所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線
x2
m-1
-
y2
m-2
=1
表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程
x2
m
+
y2
2m-1
=1表示的曲線是焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)m的取值范圍為( 。
A、(0,1)
B、(
1
2
,+∞)
C、(0,
1
2
D、(
1
2
,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案