精英家教網 > 高中數學 > 題目詳情
(文)設P是雙曲線上一點,雙曲線的一條漸近線方程為3x-2y=0,F1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( )
A.3或7
B.1或9
C.7
D.9
【答案】分析:由雙曲線的方程、漸近線的方程求出a,由雙曲線的定義求出|PF2|.
解答:解:由雙曲線的方程、漸近線的方程可得,∴a=2.由雙曲線的定義可得||PF2|-5|=4,∴|PF2|=9,
故選D.
點評:本題考查雙曲線的定義和雙曲線的標準方程,以及雙曲線的簡單性質的應用,由雙曲線的方程、漸近線的方程求出a是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文)設P是雙曲線
x2
a2
-
y2
9
=1
上一點,雙曲線的一條漸近線方程為3x-2y=0,F1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( 。
A、3或7B、1或9C、7D、9

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(文)設P是雙曲線
x2
a2
-
y2
9
=1
上一點,雙曲線的一條漸近線方程為3x-2y=0,F1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( 。
A.3或7B.1或9C.7D.9

查看答案和解析>>

科目:高中數學 來源:2006-2007學年浙江省寧波市八校聯考高二(上)數學試卷(解析版) 題型:選擇題

(文)設P是雙曲線上一點,雙曲線的一條漸近線方程為3x-2y=0,F1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( )
A.3或7
B.1或9
C.7
D.9

查看答案和解析>>

科目:高中數學 來源:2008-2009學年浙江省紹興一中高二(上)期末數學試卷(文科)(解析版) 題型:選擇題

(文)設P是雙曲線上一點,雙曲線的一條漸近線方程為3x-2y=0,F1、F2分別是雙曲線左右焦點.若|PF1|=5,則|PF2|=( )
A.3或7
B.1或9
C.7
D.9

查看答案和解析>>

同步練習冊答案