在直三棱柱中,分別是的中點.

(1)求證:平面;
(2)求多面體的體積.
(1)詳見解析;(2)

試題分析:(1)連接,根據(jù)中位線可得,再根據(jù)線面平行的判定定理證平面。(2)轉(zhuǎn)化為以為頂點,根據(jù)棱錐體積公式可直接求得。
試題解析:(1)證:連接,由分別是的中點

                             3分
平面,平面,     5分
平面                     6分
(2) 三棱柱是直三棱柱,,             8分
的中點.      9分
      10分
     12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐P­ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCDE,F分別為棱BCAD的中點.
 
(1)求證:DE∥平面PFB;
(2)已知二面角P­BF­C的余弦值為,求四棱錐P­ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

請您設(shè)計一個帳篷,它下部的形狀是高為1m正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如圖所示)。試問當帳篷的頂點O到底面中心O1的距離為多少時,帳篷的體積最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,一個底面半徑為的圓柱形量杯中裝有適量的水若放入一個半徑為的實心鐵球,水面高度恰好升高,則____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在半徑為R的半球內(nèi)有一內(nèi)接圓柱,則這個圓柱的體積的最大值是(  )
A.πR3B.πR3
C.πR3D.πR3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

網(wǎng)格紙中的小正方形邊長為1,一個正三棱錐的側(cè)視圖如圖所示,則這個正三棱錐的體積為(  )
A.B.3C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

棱長為2的正方體的內(nèi)切球的表面積為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

三棱錐的頂點為P,PA,PB,PC為三條棱,且PA,PB,PC兩兩垂直,又PA=2,PB=3,PC=4,則三棱錐P-ABC的體積是                      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將某個圓錐沿著母線和底面圓周剪開后展開,所得的平面圖是一個圓和扇形,己知該扇形的半徑為24cm,圓心角為,則圓錐的體積是________.

查看答案和解析>>

同步練習冊答案