已知函數(shù)f(x)=
x2+1,(0<x≤1)
2x,(-1≤x≤0)
且f(m)=
5
4
,則m的值為(  )
A、log2
5
4
B、
1
2
C、-
1
2
D、±
1
2
考點:分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題中所給的函數(shù)是一個分段函數(shù),解此類函數(shù)有關(guān)的方程的解,要分段求解,每一段上的解的全體即為此方程的根
解答: 解:由題意,令m2+1=
5
4
,解得m=±
1
2
,又0<m≤1故m=
1
2
是方程的根
令2m=
5
4
,解得m=log2
5
4
>0,與-1≤m≤0矛盾,此時無解
綜上知,方程的根是m=
1
2

故選:B.
點評:本題考查已知函數(shù)值求自變量,是一個解與分段函數(shù)有關(guān)的方程的題,解此類題的關(guān)鍵是掌握其解題技巧,分段求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若z=sinθ-
3
5
+i(cosθ-
4
5
)是純虛數(shù),則tan(θ-π)的值為( 。
A、
3
4
B、
4
3
C、-
3
4
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sinAsinB<cosAcosB,則這個三角形的形狀是(  )
A、銳角三角形
B、鈍角三角形
C、直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點A(-2,1)B(2,3),且在兩坐標(biāo)上截距之和為4的圓的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(cos25°,sin25°),
b
=(cos20°,sin20°),若
c
=
a
+t
b
(t∈R)
,則|
c
|的最小值為(  )
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線E:y2=4x,點F(a,0),直線l:x=-a(a>0).
(Ⅰ)P為直線l上的點,R是線段PF與y軸的交點,且點Q滿足RQ⊥FP,PQ⊥l.當(dāng)a=1時,試問點Q是否在拋物線E上,并說明理由;
(Ⅱ)過點F的直線交拋物線E于A,B兩點,直線OA,OB分別與直線l交于M,N兩點(O為坐標(biāo)原點),求證:以MN為直徑的圓恒過定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知動點M(x,y),點A(0,1),B(0,-1),D(1,0),點N與點M關(guān)于直線y=x對稱,且
AN
BN
=
1
2
x2
.直線l是過點D的任意一條直線.
(1)求動點M所在曲線C的軌跡方程;
(2)設(shè)直線l與曲線C交于G、H兩點,且|GH|=
3
2
2
,求直線l的方程;
(3)(理科)若直線l與曲線C交于G、H兩點,與線段AB交于點P(點P不同于點O、A、B),直線GB與直線HA交于點Q,求證:
OP
OQ
是定值.
(文科) 設(shè)直線l與曲線C交于G、H兩點,求以|GH|的長為直徑且經(jīng)過坐標(biāo)原點O的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
100
k=1
(x+1)k=a0+a1x+a2x2+a3x3+…+a100x
 100
 
,則
a4
a5
=( 。
A、
2
49
B、
5
97
C、
1
16
D、
7
95

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個人以每秒6米的速度去追趕停在交通燈前的汽車,當(dāng)他離汽車25米時交通燈由紅變綠,汽車開始變速直線行駛(汽車與人的前進方向相同)汽車在時間t內(nèi)的路程s=
1
2
t2米,那么此人
A.可在7秒內(nèi)追上汽車
B.可在9秒內(nèi)追上汽車
C.不能追上汽車,但其間最近距離為14米
D.不能追上汽車,但其間最近距離為7米
解:∵汽車在時刻t的速度為v(t)=t米/秒 
∴a=
v(t)
t
=
t
t
=1m/s2
由此判斷為勻加速運動
再設(shè)人于x秒追上汽車,有6x-25=
1
2
ax2    ①
∵x無解,因此不能追上汽車
①為一元二次方程,求出最近距離為7米
這一結(jié)論是怎么解出來的,請詳細解答.

查看答案和解析>>

同步練習(xí)冊答案