已知圓問(wèn)在圓C上是否存在兩點(diǎn)A,B關(guān)于直線對(duì)稱,且以AB為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫(xiě)出直線AB的方程,若不存在,說(shuō)明理由.

 

【答案】

存在滿足條件的直線

【解析】

試題分析:本題考查直線與圓的位置關(guān)系,對(duì)稱性問(wèn)題,屬探索性題型.由  A,B關(guān)于直線對(duì)稱,求出直線的斜率,假設(shè)直線的方程聯(lián)立方程組,在根據(jù)AB為直徑的圓經(jīng)過(guò)原點(diǎn)到到,即,解方程可求的解結(jié)論.

試題解析:存在滿足2條條件的直線.

,,設(shè),,

直線過(guò),而點(diǎn)在圓的內(nèi)部,故直線與圓恒相交,

又直線垂直平分直線經(jīng)過(guò)圓心,,即,

,設(shè)直線的方程為,聯(lián)立方程組消去

,,

,由,則

,解得.

直線的方程為.

故存在2條滿足條件的直線.

考點(diǎn):直線與圓的位置關(guān)系.對(duì)稱性問(wèn)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過(guò)A、B點(diǎn)作直線l1:x=-2的垂線,對(duì)應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問(wèn)是否存在實(shí)數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
進(jìn)一步思考問(wèn)題:若上述問(wèn)題中直線l1:x=-
a2
c
、點(diǎn)F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請(qǐng)給出你的判斷
 
 (填寫(xiě)“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江西省南昌市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知點(diǎn)P是圓O:x2+y2=3上動(dòng)點(diǎn),以點(diǎn)P為切點(diǎn)的切線與x軸相交于點(diǎn)Q,直線OP與直線x=1相交于點(diǎn)N,若動(dòng)點(diǎn)M滿足:,記動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若過(guò)點(diǎn)F(2,0)的動(dòng)直線與曲線C相交于不在坐標(biāo)軸上的兩點(diǎn)A,B,設(shè),問(wèn)在x軸上是否存在定點(diǎn)E,使得?若存在,求出點(diǎn)E的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省南昌市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓O:x2+y2=3上動(dòng)點(diǎn),以點(diǎn)P為切點(diǎn)的切線與x軸相交于點(diǎn)Q,直線OP與直線x=1相交于點(diǎn)N,若動(dòng)點(diǎn)M滿足:,記動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若過(guò)點(diǎn)F(2,0)的動(dòng)直線與曲線C相交于不在坐標(biāo)軸上的兩點(diǎn)A,B,設(shè),問(wèn)在x軸上是否存在定點(diǎn)E,使得?若存在,求出點(diǎn)E的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年江西省上饒市萬(wàn)年中學(xué)高考數(shù)學(xué)七模試卷(理科)(解析版) 題型:解答題

已知點(diǎn)P是圓O:x2+y2=3上動(dòng)點(diǎn),以點(diǎn)P為切點(diǎn)的切線與x軸相交于點(diǎn)Q,直線OP與直線x=1相交于點(diǎn)N,若動(dòng)點(diǎn)M滿足:,記動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若過(guò)點(diǎn)F(2,0)的動(dòng)直線與曲線C相交于不在坐標(biāo)軸上的兩點(diǎn)A,B,設(shè),問(wèn)在x軸上是否存在定點(diǎn)E,使得?若存在,求出點(diǎn)E的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案