如圖,菱形的邊長為4,,.將菱形沿對角線折起,得到三棱錐,點是棱的中點,.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
(1)詳見解析;(2)詳見解析;(3).
【解析】
試題分析:(1)利用三角形的中位線平行于相應(yīng)的底邊證明,然后結(jié)合直線與平面平行的判定定理即可證明平面;(2)先利用翻折時與的相對位置不變證明,然后利用勾股定理證明,并結(jié)合直線與平面垂直的判定定理先證明平面,最終利用平面與平面垂直的判定定理證明平面平面;(3)利用(2)中的結(jié)論平面,利用等體積法將三棱錐的體積轉(zhuǎn)化為以點為頂點,所在平面為底面的三棱錐的體積來計算,則三棱錐的高為,的面積為底面積,然后利用錐體的體積公式即可計算三棱錐的體積,在計算的面積時,首先應(yīng)確定的形狀,然后選擇合適的公式計算計算的面積.
試題解析:(1)因為O為AC的中點,M為BC的中點,所以.
因為平面ABD,平面ABD,所以平面.
(2)因為在菱形ABCD中,,所以在三棱錐中,.
在菱形ABCD中,AB=AD=4,,所以BD=4.因為O為BD的中點,
所以.因為O為AC的中點,M為BC的中點,所以.
因為,所以,即.
因為平面ABC,平面ABC,,所以平面ABC.
因為平面DOM,所以平面平面.
(3)由(2)得,平面BOM,所以是三棱錐的高.
因為,,
所以.
考點:直線與平面平行、平面與平面平行、等體積法
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省廣州市越秀區(qū)高三上學期摸底考試理科數(shù)學試卷(解析版) 題型:解答題
如圖,菱形的邊長為4,,.將菱形沿對角線折起,得到三棱錐,點是棱的中點,.
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com