如圖,菱形的邊長(zhǎng)為4,,.將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3).
【解析】
試題分析:(1)利用三角形的中位線平行于相應(yīng)的底邊證明,然后結(jié)合直線與平面平行的判定定理即可證明平面;(2)先利用翻折時(shí)與的相對(duì)位置不變證明,然后利用勾股定理證明,并結(jié)合直線與平面垂直的判定定理先證明平面,最終利用平面與平面垂直的判定定理證明平面平面;(3)作,連接,利用(2)中的結(jié)論平面,先證明平面,進(jìn)而說(shuō)明為二面角的平面角,然后在中計(jì)算,即可計(jì)算二面角的余弦值.
試題解析:(1)因?yàn)镺為AC的中點(diǎn),M為BC的中點(diǎn),所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054033961353403_DA.files/image021.png">平面ABD,平面ABD,所以平面.
(2)因?yàn)樵诹庑蜛BCD中,,所以在三棱錐中,.
在菱形ABCD中,AB=AD=4,,所以BD=4.因?yàn)镺為BD的中點(diǎn),
所以.因?yàn)镺為AC的中點(diǎn),M為BC的中點(diǎn),所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054033961353403_DA.files/image030.png">,所以,即.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054033961353403_DA.files/image033.png">平面ABC,平面ABC,,所以平面ABC.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054033961353403_DA.files/image037.png">平面DOM,所以平面平面.
(3)作于,連結(jié)DE.由(2)知,平面ABC,所以AB.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054033961353403_DA.files/image043.png">,所以平面ODE.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102910522247779699/SYS201310291054033961353403_DA.files/image045.png">平面ODE,所以.
所以是二面角的平面角.
在Rt△DOE中,,,,
所以.所以二面角的余弦值為.
考點(diǎn):直線與平面平行、平面與平面平行、二面角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省廣州市越秀區(qū)高三上學(xué)期摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,菱形的邊長(zhǎng)為4,,.將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com