已知函數(shù)y=的圖象與函數(shù)y=kx-2的圖象恰有兩個交點,求實數(shù)k的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內,每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間(單位:天)變化的函數(shù)關系式近似為若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求的最小值(精確到0.1,參考數(shù)據(jù):取1.4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設在海拔xm處的大氣壓強是yPa,y與x之間的函數(shù)關系為y=cekx,其中c、k為常量.已知某天的海平面的大氣壓為1.01×105Pa,1000m高空的大氣壓為0.90×105Pa,求600m高空的大氣壓強.(保留3位有效數(shù)字)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(km/h)是車流密度x(輛/千米)的函數(shù).當橋上的車流密度達到200輛/km時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/km時,車流速度為60km/h,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出其最大值.(精確到1輛/小時) 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù)f(x)=ax(a>1)的定義域和值域均為[m,n],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求下列各式的值.
(1)log535+2-log5-log514;
(2)log2×log3×log5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)對任意實數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負數(shù),且f (x)在區(qū)間[0,2]上有表達式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)寫出f(x)在[-3,3]上的表達式,并討論函數(shù)f(x)在[-3,3]上的單調性;
(3)求出f(x)在[-3,3]上的最小值與最大值,并求出相應的自變量的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知某物體的溫度θ(單位:攝氏度)隨時間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經(jīng)過多少時間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

同步練習冊答案