【題目】廣元市某校高三數(shù)學(xué)備課組為了更好地制定二輪復(fù)習(xí)的計(jì)劃,開展了試卷講評(píng)后效果的調(diào)研,從上學(xué)期市一診考試數(shù)學(xué)試題中選出一些學(xué)生易錯(cuò)題,重新進(jìn)行測試,并認(rèn)為做這些題不出任何錯(cuò)誤的同學(xué)為“過關(guān)”,出了錯(cuò)誤的同學(xué)為“不過關(guān)”,現(xiàn)隨機(jī)抽查了年級(jí)人,他們的測試成績的頻數(shù)分布如下表:
市一診分?jǐn)?shù)段 | |||||
人數(shù) | 5 | 10 | 15 | 13 | 7 |
“過關(guān)”人數(shù) | 1 | 3 | 8 | 8 | 6 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為市一診數(shù)學(xué)成績不低于分與測試“過關(guān)”有關(guān)?說明你的理由;
分?jǐn)?shù)低于分人數(shù) | 分?jǐn)?shù)不低于分人數(shù) | 合計(jì) | |
“過關(guān)”人數(shù) | |||
“不過關(guān)”人數(shù) | |||
合計(jì) |
(2)根據(jù)以上數(shù)據(jù)估計(jì)該校市一診考試數(shù)學(xué)成績的中位數(shù).下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
【答案】(1)填表見解析;有的把握認(rèn)為期末數(shù)學(xué)成績不低于分與測試“過關(guān)”有關(guān),詳見解析(2)中位數(shù)為分
【解析】
(1)首先根據(jù)頻數(shù)分布表中的數(shù)據(jù)填列聯(lián)表,然后計(jì)算出即可;
(2)算出每個(gè)分?jǐn)?shù)段的頻率,然后即可算出中位數(shù).
(1)根據(jù)題意得列聯(lián)表如下:
分?jǐn)?shù)低于分人數(shù) | 分?jǐn)?shù)不低于分人數(shù) | 合計(jì) | |
“過關(guān)”人數(shù) | 12 | 14 | 26 |
“不過關(guān)”人數(shù) | 18 | 6 | 24 |
合計(jì) | 30 | 20 | 50 |
所以,.
因此有的把握認(rèn)為期末數(shù)學(xué)成績不低于分與測試“過關(guān)”有關(guān).
(2)設(shè)該市一診考試數(shù)學(xué)成績的中位數(shù)為.
市一診分?jǐn)?shù)段 | |||||
人數(shù) | 5 | 10 | 15 | 13 | 7 |
頻率 | 0.1 | 0.2 | 0.3 | 0.26 | 0.14 |
根據(jù)題意有:,
解得:.
所以,該校市一診考試數(shù)學(xué)成績的中位數(shù)為分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項(xiàng),,…,的最大項(xiàng)為,第n項(xiàng)之后的各項(xiàng),,…的最小項(xiàng)為,.
(1)若數(shù)列的通項(xiàng)公式為,寫出,,;
(2)若數(shù)列的通項(xiàng)公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請(qǐng)說明理由;
(3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)有兩個(gè)極值點(diǎn)(),若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)對(duì)任意的都有,且時(shí)的最大值為,下列四個(gè)結(jié)論:①是的一個(gè)極值點(diǎn);②若為奇函數(shù),則的最小正周期;③若為偶函數(shù),則在上單調(diào)遞增;④的取值范圍是.其中一定正確的結(jié)論編號(hào)是( )
A.①②B.①③C.①②④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自由購是通過自助結(jié)算方式購物的一種形式. 某大型超市為調(diào)查顧客使用自由購的情況,隨機(jī)抽取了100人,統(tǒng)計(jì)結(jié)果整理如下:
20以下 | 70以上 | ||||||
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機(jī)抽取 1 名顧客,試估計(jì)該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機(jī)抽取3人進(jìn)一步了解情況,用表示這3人中年齡在的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望;
(Ⅲ)為鼓勵(lì)顧客使用自由購,該超市擬對(duì)使用自由購的顧客贈(zèng)送1個(gè)環(huán)保購物袋.若某日該超市預(yù)計(jì)有5000人購物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由邊長為4的正六邊形,矩形,組成的一個(gè)平面圖形,將其沿,折起得幾何體,使得,且平面平面,如圖2.
(1)證明:圖2中,平面平面;
(2)設(shè)點(diǎn)M為圖2中線段上一點(diǎn),且,若直線平面,求圖2中的直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的導(dǎo)函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極大值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)批量生產(chǎn)了一種汽車配件,總數(shù)為,配件包裝上標(biāo)有從1到的連續(xù)自然數(shù)序號(hào),為對(duì)配件總數(shù)進(jìn)行估計(jì),質(zhì)檢員隨機(jī)抽取了個(gè)配件,序號(hào)從小到大依次為,,…,,這個(gè)序號(hào)相當(dāng)于從區(qū)間上隨機(jī)抽取了個(gè)整數(shù),這個(gè)整數(shù)將區(qū)間分為個(gè)小區(qū)間,,…,.由于這個(gè)整數(shù)是隨機(jī)抽取的,所以前個(gè)區(qū)間的平均長度與所有個(gè)區(qū)間的平均長度近似相等,進(jìn)而可以得到的估計(jì)值.已知,質(zhì)檢員隨機(jī)抽取的配件序號(hào)從小到大依次為83,135,274,…,3104.
(1)用上面的方法求的估計(jì)值.
(2)將(1)中的估計(jì)值作為這批汽車配件的總數(shù),從中隨機(jī)抽取100個(gè)配件測量其內(nèi)徑(單位:),繪制出頻率分布直方圖如下:
將這100個(gè)配件的內(nèi)徑落入各組的頻率視為這個(gè)配件內(nèi)徑分布的概率,已知標(biāo)準(zhǔn)配件的內(nèi)徑為200,把這個(gè)配件中內(nèi)徑長度最接近標(biāo)準(zhǔn)配件內(nèi)徑長度的800個(gè)配件定義為優(yōu)等品,求優(yōu)等品配件內(nèi)徑的取值范圍(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F是拋物線C:x2=4y的焦點(diǎn),過E(0,﹣1)的直線l與拋物線分別交于A,B兩點(diǎn).
(1)設(shè)直線AF,BF的斜率分別為k1,k2,證明:k1+k2=0;
(2)若的面積為,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com