分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
z的幾何意義為區(qū)域內(nèi)的點(diǎn)到原點(diǎn)的距離,
由圖象知,OA的距離最大,
由$\left\{\begin{array}{l}{y=2}\\{x-y=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即A(3,2),
則z=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
故答案為:$\sqrt{13}$
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合結(jié)合距離的幾何意義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$ | B. | $\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$ | C. | $\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{c}$ | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\stackrel{c}{→}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{19}$ | B. | 16 | C. | 2$\sqrt{13}$ | D. | 34-18$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{3}$,2) | B. | (1,2) | C. | (-2,-$\sqrt{3}$)∪($\sqrt{3}$,2) | D. | (-2,-$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
輸入 | 1 | 2 | 3 | 4 | 5 | … |
輸出 | $\frac{1}{2}$ | $\frac{2}{5}$ | $\frac{3}{8}$ | $\frac{4}{11}$ | $\frac{5}{14}$ | … |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com