為了調查喜愛運動是否和性別有關,我們隨機抽取了50名對象進行了問卷調查得到了如下的2×2列聯(lián)表:
喜愛運動不喜愛運動合計
男性
 
5
 
女性10
 
 
合計
 
 
50
若在全部50人中隨機抽取2人,抽到喜愛運動和不喜愛運動的男性各一人的概率為
4
49

(1)請將上面的2×2列聯(lián)表補充完整;
(2)能否在犯錯誤的概率不超過0.001的前提下認為喜愛運動與性別有關?說明你的理由.
附:
P(K2≥k)0.050.010.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考點:獨立性檢驗的應用
專題:計算題,概率與統(tǒng)計
分析:(1)根據(jù)在全部50人中隨機抽取2人,抽到喜愛運動和不喜愛運動的男性各一人的概率為
4
49
,可得喜愛運動的男性的學生,即可得到列聯(lián)表;
(2)利用公式求得K2,與臨界值比較,即可得到結論.
解答: 解:(1)設喜愛運動的男性有x人,由題意可知
C
1
x
C
1
5
C
2
50
=
4
49
,解得x=20,…(3分)
所以填表如下
喜愛運動不喜愛運動合 計
男性20525
女性101525
合計302050
…(6分)
(2)得到k2=
50(20×15-10×5)2
30×20×25×25
≈8.333<10.828,…(10分)
故不能在犯錯誤的概率不超過0.001的前提下認為推斷喜愛運動與性別有關.…(12分)
點評:根據(jù)所給的列聯(lián)表得到求觀測值所用的數(shù)據(jù),把數(shù)據(jù)代入觀測值公式中,做出觀測值,同所給的臨界值表進行比較,得到所求的值所處的位置,得到百分數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線kx-y+2=0與圓x2+y2=9的位置關系是( 。
A、相離B、相切
C、相交D、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C三點同在直線l上,點O不在l上,且
OA
=(1+xlnx)
OB
-(mx2-f(x))
OC
,又函數(shù)f(x)的極大值點為x1,極小值點為x2,則( 。
A、0<m<
1
2
,x2<1<x1
B、0<m<1,x1<1<x2
C、0<m<1,x2<1<x1
D、0<m<
1
2
,x1<1<x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-y2=1(a>0)與直線l:x+y=1相交于兩個不同點,則雙曲線的離心率e的取值范圍為( 。
A、(
6
2
,
2
)∪(
2
,+∞)
B、(
3
2
,
2
)∪(
2
,+∞)
C、(
2
,+∞)
D、(
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a>b>0,下列不等式一定成立的是(  )
A、a+
1
a
>b+
1
b
B、
c
a
c
b
C、
2a+b
a+2b
a
b
D、
a+b
2
ab
2ab
a+b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某化妝品生產(chǎn)公司計劃在鄭州的“五一社區(qū)”舉行為期三天的“健康使用化妝品知識講座”.每位有興趣的同志可以在期間的任意一天參加任意一個講座,也可以放棄任何一個講座.規(guī)定:各個講座達到預先設定的人數(shù)時稱為滿座,否則稱為不滿座.若各個講座各天滿座的概率如下:
洗發(fā)水講座洗面奶講座護膚霜講座活顏營養(yǎng)講座指油使用講座
第一天
1
4
1
4
1
4
1
4
1
2
第二天
1
2
1
2
1
2
1
2
2
3
第三天
1
3
1
3
1
3
1
3
2
3
(1)求指油使用講座三天都不滿座的概率;
(2)設第二天滿座的講座數(shù)目為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人拋擲一枚硬幣,出現(xiàn)正面、反面的概率均為
1
2
.構造數(shù)列{an},使得an=
1當?shù)趎次出現(xiàn)正面時
-1當?shù)趎次出現(xiàn)反面時
,記Sn=a1+a2+a3+…+an(n∈N*).
(1)求S4=2的概率.
(2)若前兩次均出現(xiàn)正面,求2≤S6≤6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學科競賽的預賽考試分為一試和加試兩部分測試,且規(guī)定只有一試考試達標著才可以進入加試考試,一試考試和
加試考試都達標才算優(yōu)勝者,從而進入決賽,一試試卷包括三個獨立的必做題目,加試包括兩個獨立的必做題目,若一試考試至少答對兩個問題就認定為達標,加試需兩個題目都答對才算達標,假設甲同學一試考試中答對每個題的概率均為
2
3
,加試考試中答對每個題的概率都為
1
2
,且各題答題情況均互不影響.
(1)求甲同學成為優(yōu)勝者,順利進入決賽的概率; 
(2)設甲同學解答的題目的個數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用秦九韶算法計算f(x)=2x4+3x3+5x+4在x=2時的值.寫出詳細步驟.

查看答案和解析>>

同步練習冊答案