a>b>0,下列不等式一定成立的是( 。
A、a+
1
a
>b+
1
b
B、
c
a
c
b
C、
2a+b
a+2b
a
b
D、
a+b
2
ab
2ab
a+b
考點(diǎn):不等式的基本性質(zhì)
專題:不等式
分析:根據(jù)不等式的性質(zhì)和基本不等式的性質(zhì)判斷即可,利用特殊值法,也是一種方法.
解答: 解:對(duì)于選項(xiàng)A,若a=2,b=
1
2
,則2+
1
2
=
1
2
+2
,故A不成立,
對(duì)于選項(xiàng)B,c可正可負(fù)可為0,故B不成立,
對(duì)于選項(xiàng)C,若C成立,則b(2a+b)>a(a+2b),即b2>a2,即b>a,與已知條件矛盾,故C不成立,
對(duì)于選項(xiàng)D,根據(jù)基本不等式的性質(zhì)可得
a+b
2
ab
,
ab
=
ab
ab
2ab
a+b
,故D成立.
故選:D.
點(diǎn)評(píng):本題主要考查了不等式的性質(zhì),合理的比較不等式成立是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知點(diǎn)P(5,-1,4),則點(diǎn)P關(guān)于Z軸的對(duì)稱點(diǎn)為( 。
A、P′(5,-1,-4)
B、P′(-5,-1,-4)
C、P′(-5,1,4)
D、P′(-5,1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各數(shù)中與1010(4)相等的數(shù)是( 。
A、1000100(2)
B、103(8)
C、2111(3)
D、76(9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
m-2
+
y2
m+5
=1的焦點(diǎn)坐標(biāo)是( 。
A、(±7,0)
B、(0,±7)
C、(±
7
,0)
D、(0,±
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
4x-9y+11≥0
4x+5y-3≥0
2x-y-5≤0
,則目標(biāo)函數(shù)z=2x-3y的最小值為( 。
A、-4B、-2C、-1D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了調(diào)查喜愛(ài)運(yùn)動(dòng)是否和性別有關(guān),我們隨機(jī)抽取了50名對(duì)象進(jìn)行了問(wèn)卷調(diào)查得到了如下的2×2列聯(lián)表:
喜愛(ài)運(yùn)動(dòng)不喜愛(ài)運(yùn)動(dòng)合計(jì)
男性
 
5
 
女性10
 
 
合計(jì)
 
 
50
若在全部50人中隨機(jī)抽取2人,抽到喜愛(ài)運(yùn)動(dòng)和不喜愛(ài)運(yùn)動(dòng)的男性各一人的概率為
4
49

(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜愛(ài)運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由.
附:
P(K2≥k)0.050.010.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出定義在(0,+∞)上的三個(gè)函數(shù):f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,已知g(x)在x=1處取極值.
(Ⅰ)求實(shí)數(shù)a的值,并確定函數(shù)h(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)1<x<e2時(shí),恒有x<
2+f(x)
2-f(x)
成立;
(Ⅲ)若函數(shù)y=m-g(x)在[
1
e
,e]上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:①f(1)=3;②f(x)≥2恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2.
(1)求f(x)的最大值和最小值;
(2)試比較f(
1
2n
)與
1
2n
+2的大小(n∈N);
(3)若對(duì)任意x∈(0,1],總存在n(n∈N),使得
1
2n+1
<x≤
1
2n
,求證:對(duì)任意x∈(0,1],都有f(x)≤2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=(m+1)x2-2(m+1)x-m的最值,其中m為常數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案