某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計水池能使總造價最低?最低造價是多少?
分析:(Ⅰ)分析題意,本小題是一個建立函數(shù)模型的問題,可設(shè)水池的底面積為S1,池壁面積為S2,由題中所給的關(guān)系,將此兩者用池底長方形長x表示出來.
(Ⅱ)此小題是一個花費最小的問題,依題意,建立起總造價的函數(shù)解析式,由解析式的結(jié)構(gòu)發(fā)現(xiàn),此函數(shù)的最小值可用基本不等式求最值,從而由等號成立的條件求出池底邊長度,得出最佳設(shè)計方案
解答:解:(Ⅰ)設(shè)水池的底面積為S1,池壁面積為S2,
則有S1=
4800
3
=1600
(平方米),
可知,池底長方形寬為
1600
x
米,則S2=6x+6×
1600
x
=6(x+
1600
x
)
(5分)
(Ⅱ)設(shè)總造價為y,則y=150×1600+120×6(x+
1600
x
)≥240000+57600=297600

當(dāng)且僅當(dāng)x=
1600
x
,即x=40時取等號,
所以x=40時,總造價最低為297600元.
答:x=40時,總造價最低為297600元.(12分)
點評:本題考查函數(shù)模型的選擇與應(yīng)用,解題的關(guān)鍵是建立起符合條件的函數(shù)模型,故分析清楚問題的邏輯聯(lián)系是解決問題的重點,此類問題的求解的一般步驟是:建立函數(shù)模型,進(jìn)行函數(shù)計算,得出結(jié)果,再將結(jié)果反饋到實際問題中指導(dǎo)解決問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)當(dāng)x為何值時,水池的總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年北京市海淀區(qū)高一(下)期中數(shù)學(xué)試卷(必修5)(解析版) 題型:解答題

某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山西省高一6月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

某工廠修建一個長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.

(1)求底面積,并用含x的表達(dá)式表示池壁面積;

(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

 

查看答案和解析>>

同步練習(xí)冊答案