某工廠修建一個(gè)長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.

(1)求底面積,并用含x的表達(dá)式表示池壁面積;

(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

 

【答案】

(1) s=1600,

(2) x="40," 最低造價(jià)268800

【解析】

試題分析:(1)根據(jù)題意,由于修建一個(gè)長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.可得底面積為1600,池壁面積;s=(2)同時(shí)池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米,則可知總造價(jià)s=,x=40時(shí)則.故可知當(dāng)x=40時(shí),則有可使得總造價(jià)最低。最低造價(jià)師268800元.

考點(diǎn):不等式求解最值

點(diǎn)評:主要是考查了不等式求解最值的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠修建一個(gè)長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)當(dāng)x為何值時(shí),水池的總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠修建一個(gè)長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠修建一個(gè)長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年北京市海淀區(qū)高一(下)期中數(shù)學(xué)試卷(必修5)(解析版) 題型:解答題

某工廠修建一個(gè)長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊答案