已知定義在R上的奇函數(shù),滿足,且在區(qū)間上是增函數(shù),則 ( )
A << B <<
C << D <<
D
【解析】
試題分析:由f(x)滿足f(x-4)=-f(x)可變形為f(x-8)=f(x),得到函數(shù)是以8為周期的周期函數(shù),則有f(-25)=f(-1),f(80)=f(0),f(11)=f(3),再由f(x)在R上是奇函數(shù),f(0)=0,得到f(80)=f(0)=0,f(-25)=f(-1),再由f(x)在區(qū)間[0,2]上是增函數(shù),以及奇函數(shù)的性質(zhì),推出函數(shù)在[-2,2]上的單調(diào)性,即可得到結(jié)論.解:∵f(x)滿足f(x-4)=-f(x),∴f(x-8)=f(x),∴函數(shù)是以8為周期的周期函數(shù),則f(-25)=f(-1),f(80)=f(0),f(11)=f(3),又∵f(x)在R上是奇函數(shù),f(0)=0,得f(80)=f(0)=0,f(-25)=f(-1),而由f(x-4)=-f(x)
得f(11)=f(3)=-f(-1)=f(1),又∵f(x)在區(qū)間[0,2]上是增函數(shù),f(x)在R上是奇函數(shù)∴f(x)在區(qū)間[-2,2]上是增函數(shù)∴f(1)>f(0)>f(-1),即f(-25)<f(80)<f(11),故選D
考點:抽象函數(shù)的周期性
點評:本題主要考查抽象函數(shù)的周期性來轉(zhuǎn)化區(qū)間,單調(diào)性來比較函數(shù)值的大。
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
b |
1 |
a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:大連二十三中學(xué)2011學(xué)年度高二年級期末測試試卷數(shù)學(xué)(理) 題型:選擇題
已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函
數(shù),則( ).
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省高二下學(xué)期期末考試理科數(shù)學(xué)試卷 題型:選擇題
已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函
數(shù),若方程在區(qū)間上有四個不同的根,則
( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com