現(xiàn)給出如下命題:
(1)若某音叉發(fā)出的聲波可用函數(shù)y=0.002sin800πt(t∈R+)描述,其中t的單位是秒,則該聲波的頻率是400赫茲;
(2)在△ABC中,若c2=a2+b2+ab,則數(shù)學公式;
(3)從一個總體中隨機抽取一個樣本容量為10的樣本:11,10,12,10,9,8,9,11,12,8,則該總體標準差的點估計值是數(shù)學公式
則其中正確命題的序號是


  1. A.
    (1)、(2)
  2. B.
    (1)、(3)
  3. C.
    (2)、(3)
  4. D.
    (1)、(2)、(3)
B
分析:(1)根據y=Asin(ωx+φ)中參數(shù)的物理意義求出函數(shù)的周期,進而可求頻率;
(2)利用余弦定理表示出cosC,將已知的等式變形后代入,由C為三角形的內角,利用特殊角的三角函數(shù)值即可求出C的度數(shù);
(3)先計算平均數(shù),再計算該總體標準差的點估計值即可.
解答:(1)根據三角函數(shù)的模型有關定義可得:該聲波的周期為T==,∴頻率是f==400赫茲,故(1)正確;
(2)∵c2=a2+b2+ab,即a2+b2-c2=-ab,∴由余弦定理得:cosC=-,又∠C為三角形的內角,∴∠C=120°,故(2)不正確;
(3)這組數(shù)的平均數(shù)為=10
∴該總體標準差的點估計值是=,故(3)正確.
綜上知:(1)(3)正確
故選B.
點評:本題主要考查了y=Asin(ωx+φ)中參數(shù)的物理意義,考查了周期和頻率;考查了余弦定理,以及特殊角的三角函數(shù)值,考查平均數(shù)與總體標準差的點估計值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)給出如下命題:
(1)若直線l與平面α內無窮多條直線都垂直,則直線l⊥平面α;
(2)空間三點確定一個平面;
(3) 先后拋兩枚硬幣,用事件A表示“第一次拋出現(xiàn)正面向上”,用事件B表示“第二次拋出現(xiàn)反面向上”,則事件A和B相互獨立且P(AB)=P(A)P(B)=
1
2
×
1
2
=
1
4
;
(4)樣本數(shù)據-1,-1,0,1,1的標準差是1.
則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,如果對任意n∈N+都有
an+2-an+1an+1-an
=p(p為常數(shù)),則稱數(shù)列{an}為“等差比”數(shù)列,p叫數(shù)列{an}的“公差比”.現(xiàn)給出如下命題:
(1)等差比數(shù)列{an}的公差比p一定不為零;
(2)若數(shù)列{an}(n∈N+)是等比數(shù)列,則數(shù)列{an}一定是等差比數(shù)列;
(3)若等比數(shù)列{an}是等差比數(shù)列,則等比數(shù)列{an}的公比與公差比相等.
則正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)給出如下命題:
(1)若直線l與平面α內無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2;
(3)某種樂器發(fā)出的聲波可用函數(shù)y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數(shù)據-1,-1,0,1,1的標準差是
2
5
5

則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃浦區(qū)一模)現(xiàn)給出如下命題:
(1)若直線l上有兩個點到平面α的距離相等,則直線l∥平面α;
(2)“平面β上有四個不共線的點到平面α的距離相等”的充要條件是“平面β∥平面α”;
(3)若一個球的表面積是108π,則它的體積V=108
3
π

(4)若從總體中隨機抽取的樣本為-2,3,-1,1,1,4,3,3,0,-1,則該總體均值的點估計值是0.9.
則其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃浦區(qū)二模)現(xiàn)給出如下命題:
(1)若某音叉發(fā)出的聲波可用函數(shù)y=0.002sin800πt(t∈R+)描述,其中t的單位是秒,則該聲波的頻率是400赫茲;
(2)在△ABC中,若c2=a2+b2+ab,則∠C=
π
3
;
(3)從一個總體中隨機抽取一個樣本容量為10的樣本:11,10,12,10,9,8,9,11,12,8,則該總體標準差的點估計值是
2
5
3

則其中正確命題的序號是(  )

查看答案和解析>>

同步練習冊答案